BOOKS - An Introduction to Spatial Data Science with GeoDa Volume 2 Clustering Spatia...
An Introduction to Spatial Data Science with GeoDa Volume 2 Clustering Spatial Data - Luc Anselin 2024 PDF CRC Press BOOKS
1 TON

Views
58798

Telegram
 
An Introduction to Spatial Data Science with GeoDa Volume 2 Clustering Spatial Data
Author: Luc Anselin
Year: 2024
Format: PDF
File size: 34.7 MB
Language: ENG



Pay with Telegram STARS
Book Description: 'An Introduction to Spatial Data Science with GeoDa Volume 2 Clustering Spatial Data' is a comprehensive guide to understanding the principles and techniques of spatial data science and its applications in various fields. The book provides a detailed overview of the technology evolution and its impact on society, highlighting the need for a personal paradigm for perceiving the technological process of developing modern knowledge as the basis for the survival of humanity and the survival of the unification of people in a warring state. It emphasizes the importance of clustering spatial data to gain insights into spatial patterns and relationships, enabling readers to make informed decisions and drive meaningful actions. The book begins by exploring the concept of spatial data and its significance in today's world. It discusses the various sources of spatial data, such as GPS, remote sensing, and social media, and how they can be used to understand human behavior, environmental changes, and economic trends. The authors then delve into the fundamentals of clustering spatial data, including the different types of clustering algorithms and their applications in various fields, such as market segmentation, disease surveillance, and urban planning.
«Введение в науку о пространственных данных с помощью GeoDa Том 2 Кластеризация пространственных данных» - это всеобъемлющее руководство по пониманию принципов и методов науки о пространственных данных и ее приложений в различных областях. В книге представлен подробный обзор эволюции технологии и её влияния на общество, подчёркивается необходимость личностной парадигмы восприятия технологического процесса развития современных знаний как основы выживания человечества и выживания объединения людей в воюющем государстве. В нем подчеркивается важность кластеризации пространственных данных для получения представления о пространственных моделях и отношениях, что позволяет читателям принимать обоснованные решения и осуществлять значимые действия. Книга начинается с изучения концепции пространственных данных и их значимости в современном мире. В нем обсуждаются различные источники пространственных данных, такие как GPS, дистанционное зондирование и социальные сети, а также то, как их можно использовать для понимания поведения людей, изменений окружающей среды и экономических тенденций. Затем авторы углубляются в основы кластеризации пространственных данных, включая различные типы алгоритмов кластеризации и их применения в различных областях, таких как сегментация рынка, эпиднадзор за болезнями и городское планирование.
''

You may also be interested in:

Agile Data Science 2.0 Building Full-Stack Data Analytics Applications with Spark
R Graphics Essentials for Great Data Visualization +200 Practical Examples You Want to Know for Data Science
The Data Preparation Journey: Finding Your Way with R (Chapman and Hall CRC Data Science Series)
Data Science Essentials with R Learn with focus on data manipulation, visualization, and machine learning
Practical Data Science with SAP Machine Learning Techniques for Enterprise Data, First Edition
Learning Data Science Data Wrangling, Exploration, Visualization, and Modeling with Python (Final)
Training Data for Machine Learning Human Supervision from Annotation to Data Science (Final)
Humanizing Big Data: Marketing at the Meeting of Data, Social Science and Consumer Insight
Learning Data Science Data Wrangling, Exploration, Visualization, and Modeling with Python (Final)
Training Data for Machine Learning Human Supervision from Annotation to Data Science (Final)
Effective Data Science Infrastructure How to make data scientists productive (MEAP Version 7)
Univariate, Bivariate, and Multivariate Statistics Using R Quantitative Tools for Data Analysis and Data Science
The Real Work of Data Science Turning data into information, better decisions, and stronger organizations
Economic Regulation of Urban and Regional Airports: Incentives, Efficiency and Benchmarking (Advances in Spatial Science)
Practical Data Science with SAP Machine Learning Techniques for Enterprise Data, Early Release
Programming Skills for Data Science Start Writing Code to Wrangle, Analyze, and Visualize Data with R
Data Science From Scratch From Data Visualization To Manipulation. It Is The Easy Way! All You Need For Business Using The Basic Principles Of Python And Beyond
Computer Science in Sport Modeling, Simulation, Data Analysis and Visualization of Sports-Related Data
Computer Science in Sport Modeling, Simulation, Data Analysis and Visualization of Sports-Related Data
Computer Science in Sport: Modeling, Simulation, Data Analysis and Visualization of Sports-Related Data
Data Science in Chemistry: Artificial Intelligence, Big Data, Chemometrics and Quantum Computing with Jupyter
Advances in Data Science Symbolic, Complex, and Network Data
Data Science and Big Data Analytics in Smart Environments
Data Smart: Using Data Science, 2nd Ed. Jordan Goldmeier
Beginning Mathematica and Wolfram for Data Science: Applications in Data Analysis, Machine Learning, and Neural Networks
Data Science and Analytics with Python (Chapman and Hall CRC Data Mining and Knowledge Discovery Series)
Data Science in Chemistry Artificial Intelligence, Big Data, Chemometrics and Quantum Computing with Jupyter (De Gruyter Textbook)
Python Data Science The Ultimate Crash Course, Tips, and Tricks to Learn Data Analytics, Machine Learning, and Their Application
Advanced Data Science and Analytics with Python (Chapman and Hall CRC Data Mining and Knowledge Discovery Series)
Essential Math for Data Science Take Control of Your Data with Fundamental Linear Algebra, Probability, and Statistics (Third Early Release)
Data Science Fundamentals with R, Python, and Open Data
Data Science Fundamentals with R, Python, and Open Data
Data Engineering and Data Science: Concepts and Applications
Data Science with Python From Data Wrangling to Visualization
Data Science Fundamentals with R, Python, and Open Data
Data Science and Data Analytics Opportunities and Challenges
Data Engineering and Data Science Concepts and Applications
Probability and statistics for data science math + R + data
R Programming for Data Science A comprehensive guide to R programming for Data Science
R Programming for Data Science A comprehensive guide to R programming for Data Science