BOOKS - Deep Reinforcement Learning and Its Industrial Use Cases AI for Real-World Ap...
Deep Reinforcement Learning and Its Industrial Use Cases AI for Real-World Applications - Shubham Mahajan, Pethuru Raj, Amit Kant Pandit 2025 PDF Wiley-Scrivener BOOKS
1 TON

Views
87677

Telegram
 
Deep Reinforcement Learning and Its Industrial Use Cases AI for Real-World Applications
Author: Shubham Mahajan, Pethuru Raj, Amit Kant Pandit
Year: 2025
Format: PDF
File size: 46.6 MB
Language: ENG



Pay with Telegram STARS
Deep Reinforcement Learning and Its Industrial Use Cases AI for Real-World Applications Introduction The world we live in today is constantly evolving, and technology plays a significant role in shaping our future. One of the most exciting and rapidly advancing areas of technology is deep reinforcement learning, which has the potential to revolutionize various industries and transform the way we live and work. This book delves into the intricacies of deep reinforcement learning and its industrial use cases, providing readers with a comprehensive understanding of this cutting-edge technology and its applications in real-world scenarios. Chapter 1: The Evolution of Technology To appreciate the significance of deep reinforcement learning, it's essential to understand the technological process of developing modern knowledge. From the invention of fire to the internet, technology has been a driving force behind human progress. Each innovation has built upon previous ones, leading to an exponential increase in knowledge and capabilities. The development of artificial intelligence (AI) represents the latest leap forward, enabling machines to learn from data and make decisions autonomously. Deep reinforcement learning is a subset of AI that utilizes neural networks to optimize decision-making processes.
Глубокое обучение и примеры промышленного использования искусственного интеллекта для реальных приложений Введение Мир, в котором мы живем сегодня, постоянно развивается, и технологии играют важную роль в формировании нашего будущего. Одной из наиболее интересных и быстро развивающихся областей технологий является глубокое обучение с подкреплением, которое может революционизировать различные отрасли и изменить наш образ жизни и работы. Эта книга углубляется в тонкости глубокого обучения и его сценарии промышленного использования, предоставляя читателям исчерпывающее понимание этой передовой технологии и ее применения в реальных сценариях. Глава 1: Эволюция технологий Чтобы оценить значение глубокого обучения, важно понимать технологический процесс развития современных знаний. От изобретения огня до Интернета технологии были движущей силой человеческого прогресса. Каждая инновация опирается на предыдущие, что приводит к экспоненциальному увеличению знаний и возможностей. Развитие искусственного интеллекта (ИИ) представляет собой последний скачок вперед, позволяющий машинам учиться на данных и принимать решения автономно. Глубокое обучение с подкреплением - это подмножество ИИ, которое использует нейронные сети для оптимизации процессов принятия решений.
''

You may also be interested in:

Deep Reinforcement Learning and Its Industrial Use Cases AI for Real-World Applications
Deep Reinforcement Learning and Its Industrial Use Cases AI for Real-World Applications
Artificial Intelligence What You Need to Know About Machine Learning, Robotics, Deep Learning, Recommender Systems, Internet of Things, Neural Networks, Reinforcement Learning, and Our Future
Python AI Programming: Navigating fundamentals of ML, deep learning, NLP, and reinforcement learning in practice
Python AI Programming Navigating fundamentals of ML, Deep Learning, NLP, and reinforcement learning in practice
Python AI Programming Navigating fundamentals of ML, Deep Learning, NLP, and reinforcement learning in practice
TensorFlow for Deep Learning From Linear Regression to Reinforcement Learning
Deep Reinforcement Learning
Deep Reinforcement Learning in Action
Deep Reinforcement Learning with Python, 2E
Deep Reinforcement Learning in Action
Practical Deep Reinforcement Learning with Python
Grokking Deep Reinforcement Learning (Final Edition)
Foundations of Deep Reinforcement Learning Theory and Practice in Python
Deep Reinforcement Learning with Python: With PyTorch, TensorFlow and OpenAI Gym
Deep Reinforcement Learning for Wireless Communications and Networking Theory, Applications and Implementation
Foundations of Deep Reinforcement Learning Theory and Practice in Python (Rough Cuts)
Deep Reinforcement Learning for Wireless Communications and Networking: Theory, Applications and Implementation
Deep Reinforcement Learning for Reconfigurable Intelligent Surfaces and UAV Empowered Smart 6G Communications
Deep Reinforcement Learning with Python RLHF for Chatbots and Large Language Models, 2nd Edition
Deep Reinforcement Learning with Python RLHF for Chatbots and Large Language Models, 2nd Edition
Hands-On Intelligent Agents with OpenAI Gym: Your guide to developing AI agents using deep reinforcement learning
Deep Learning Techniques for Automation and Industrial Applications
Deep Learning Techniques for Automation and Industrial Applications
Deep Learning for Data Architects: Unleash the power of Python|s deep learning algorithms (English Edition)
Java Deep Learning Projects: Implement 10 real-world deep learning applications using Deeplearning4j and open source APIs
Building Scalable Deep Learning Pipelines on AWS Develop, Train, and Deploy Deep Learning Models
Getting started with Deep Learning for Natural Language Processing Learn how to build NLP applications with Deep Learning
Deep Learning for the Life Sciences Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More First Edition
Deep Learning fur die Biowissenschaften Einsatz von Deep Learning in Genomik, Biophysik, Mikroskopie und medizinischer Analyse
Deep Learning for Finance Creating Machine & Deep Learning Models for Trading in Python
Deep Learning for Data Architects Unleash the power of Python|s deep learning algorithms
Deep Learning for the Life Sciences Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More
Deep Learning for Data Architects Unleash the power of Python|s deep learning algorithms
Anatomy of Deep Learning Principles: Writing a deep learning library from scratch (Japanese Edition)
Deep Learning for Finance Creating Machine & Deep Learning Models for Trading in Python
Statistical Reinforcement Learning Modern Machine Learning Approaches
Distributional Reinforcement Learning (Adaptive Computation and Machine Learning)
Programming PyTorch for Deep Learning Creating and Deploying Deep Learning Applications First Edition
Deep Learning With Python Develop Deep Learning Models on Theano and TensorFlow using Keras