BOOKS - Deep Learning with PyTorch Step-by-Step A Beginner's Guide
Deep Learning with PyTorch Step-by-Step A Beginner
3 TON

Views
34143

Telegram
 
Deep Learning with PyTorch Step-by-Step A Beginner's Guide
Author: Daniel Voigt Godoy
Year: 2024-07-29 v1.2
Format: PDF
File size: 33.5 MB
Language: ENG



Pay with Telegram STARS
Deep Learning with PyTorch StepbyStep A Beginner's Guide The book "Deep Learning with PyTorch StepbyStep A Beginner's Guide" is a comprehensive guide to deep learning using PyTorch, one of the most popular deep learning frameworks. The book covers the basics of deep learning and provides step-by-step instructions for implementing various deep learning algorithms using PyTorch. It is written in a clear and concise manner, making it easy for beginners to understand and follow along. The book begins by introducing the concept of deep learning and its importance in today's technology landscape. It explains how deep learning has revolutionized the field of artificial intelligence and has enabled the development of intelligent systems that can perform complex tasks such as image recognition, speech recognition, and natural language processing. The book then delves into the details of PyTorch, explaining its architecture and how it differs from other deep learning frameworks. The next chapter focuses on the basics of deep learning, including the different types of neural networks, activation functions, and backpropagation. This chapter also covers the importance of optimization techniques and how they are used to train deep learning models. The author provides examples of common optimization algorithms such as stochastic gradient descent (SGD) and Adam.
Deep arning with PyTorch StepbyStep A Beginner's Guide Книга «Deep arning with PyTorch StepbyStep A Beginner's Guide» является всеобъемлющим руководством по глубокому обучению с использованием PyTorch, одной из самых популярных систем глубокого обучения. Книга охватывает основы глубокого обучения и содержит пошаговые инструкции по реализации различных алгоритмов глубокого обучения с помощью PyTorch. Он написан в ясной и лаконичной манере, что позволяет новичкам легко понять и следовать за ним. Книга начинается с представления концепции глубокого обучения и его важности в современном технологическом ландшафте. Он объясняет, как глубокое обучение произвело революцию в области искусственного интеллекта и позволило разработать интеллектуальные системы, которые могут выполнять сложные задачи, такие как распознавание изображений, распознавание речи и обработка естественного языка. Затем книга углубляется в детали PyTorch, объясняя его архитектуру и то, чем он отличается от других фреймворков глубокого обучения. Следующая глава посвящена основам глубокого обучения, включая различные типы нейронных сетей, функции активации и обратное распространение. В этой главе также рассматривается важность методов оптимизации и то, как они используются для обучения моделей глубокого обучения. Автор приводит примеры распространенных алгоритмов оптимизации, таких как стохастический градиентный спуск (SGD) и Adam.
''

You may also be interested in:

Deep Learning with PyTorch Step-by-Step A Beginner|s Guide
Deep Learning with PyTorch Step-by-Step A Beginner|s Guide
Deep Learning with PyTorch Step-by-Step A Beginner|s Guide
Ultimate Step by Step Guide to Deep Learning Using Python Artificial Intelligence and Neural Network Concepts Explained in Simple Terms (Ultimate Step by Step Guide to Machine Learning Book 2)
Python Machine Learning: Everything You Should Know About Python Machine Learning Including Scikit Learn, Numpy, PyTorch, Keras And Tensorflow With Step-By-Step Examples And PRACTICAL Exercises
Deep Learning with Python The ultimate beginners guide to Learn Deep Learning with Python Step by Step
Deep Learning Demystified A Step-by-Step Introduction to Neural Networks
Deep Learning Crash Course for Beginners with Python Theory and Applications step-by-step using TensorFlow 2.0
Learning PyTorch 2.0, Second Edition Utilize PyTorch 2.3 and CUDA 12 to experiment neural networks and Deep Learning models
Learning PyTorch 2.0, Second Edition Utilize PyTorch 2.3 and CUDA 12 to experiment neural networks and Deep Learning models
Learning PyTorch 2.0 Experiment Deep Learning from basics to complex models using every potential capability of Pythonic PyTorch
Learning PyTorch 2.0: Experiment deep learning from basics to complex models using every potential capability of Pythonic PyTorch
Learning PyTorch 2.0 Experiment Deep Learning from basics to complex models using every potential capability of Pythonic PyTorch
Programming PyTorch for Deep Learning Creating and Deploying Deep Learning Applications First Edition
Carve a World of Gnomes: Step-By-Step Techniques for 7 Simple Projects (Fox Chapel Publishing) Full-Size Patterns, Step-by-Step Instructions, Painting and Finishing Tips, Gnome Backstories, and More
Super Simple Animal Whittles: 5 Step-by-Step Woodcarving Projects for Beginners (Fox Chapel Publishing) Full-Size Patterns and Step-by-Step Instructions for a Bear, Dinosaur, Bird, Cat, and Fish
Kickboxing From A to Z. A Step-by-Step Guide For Learning. The Fighter|s Workout Without The Fight!
Machine Learning in Action A Primer for The Layman, Step by Step Guide for Newbies
Learning How to Lose, in Six Easy Steps. Step One: Tetris Step Two: Fun and Games
Learning How to Lose, in Six Easy Steps. Step Three: Innocence Step Four: Perspective
Learn Programming with C An Easy Step-by-Step Self-Practice Book for Learning C
Reinforcement Learning Explained - A Step-by-Step Guide to Reward-Driven AI
Learn Programming with C An Easy Step-by-Step Self-Practice Book for Learning C
Learning How to Lose, in Six Easy Steps. Step Five: Love Step Six: All the Rest
Python Machine Learning for Beginners A Step by Step Approach to Scikit-Learn and TensorFlow
Python Machine Learning for Beginners A Step by Step Approach to Scikit-Learn and TensorFlow
Deep Learning with Python The Crash Course for Beginners to Learn the Basics of Deep Learning with Python Using TensorFlow, Keras and PyTorch
Machine Learning Mastery With R Get Started, Build Accurate Models And Work Through Projects Step-by-Step
Coaching and Mentoring in Higher Education: A Step-by-Step Guide to Exemplary Practice (Teaching and Learning, 6)
HTML & CSS for Complete Beginners A Step by Step Guide to Learning HTML5 and CSS3
Python Programming: A Step-by-Step Guide to Learning the Language
Python Programming A Step-by-Step Guide to Learning the Language
Python Programming A Step-by-Step Guide to Learning the Language
Machine Learning A Comprehensive, Step-by-Step Guide to Intermediate Concepts and Techniques in Machine Learning
Learn Data Mining Through Excel A Step-by-Step Approach for Understanding Machine Learning Methods, 2nd Edition
Learning PHP, MySQL, javascript, and CSS A Step-by-Step Guide to Creating Dynamic Websites
Learn Data Mining Through Excel A Step-by-Step Approach for Understanding Machine Learning Methods, 2nd Edition
Machine Learning with R Step by Step Guide for Newbies
Ultimate Step by Step Guide to Machine Learning Using Python Predictive modelling concepts explained in simple terms for beginners
Machine Learning For Beginners Step-by-Step Guide to Machine Learning, a Beginners Approach to Artificial Intelligence, Big Data, Basic Python Algorithms, and Techniques for Business (Practical Exampl