BOOKS - Machine Learning with Noisy Labels Definitions, Theory, Techniques and Soluti...
Machine Learning with Noisy Labels Definitions, Theory, Techniques and Solutions - Gustavo Carneiro 2024 EPUB Academic Press/Elsevier BOOKS
1 TON

Views
71218

Telegram
 
Machine Learning with Noisy Labels Definitions, Theory, Techniques and Solutions
Author: Gustavo Carneiro
Year: 2024
Format: EPUB
File size: 43.5 MB
Language: ENG



Pay with Telegram STARS
Machine Learning with Noisy Labels: Definitions, Theory, Techniques, and Solutions The book "Machine Learning with Noisy Labels" provides a comprehensive overview of the challenges and solutions for dealing with noisy labels in machine learning. The author, Yaser Sheikh, is a renowned expert in the field of computer vision and machine learning, and this book offers a thorough understanding of the various definitions, theories, techniques, and solutions for addressing noisy labels in machine learning. The book begins by defining what noisy labels are and their impact on machine learning algorithms. It explains how noisy labels can lead to biased models that perpetuate errors, resulting in poor performance and incorrect predictions. The author then delves into the theoretical foundations of machine learning with noisy labels, discussing the underlying principles and mathematical formulations that govern the process. The book covers several techniques for dealing with noisy labels, including noise-tolerant loss functions, robust optimization methods, and ensemble learning approaches. These techniques are presented in a clear and concise manner, making it easy for readers to understand and apply them in real-world applications. Additionally, the book explores the limitations and trade-offs of each technique, providing a balanced perspective on their effectiveness.
Машинное обучение с шумными метками: определения, теория, методы и решения В книге «Машинное обучение с шумными метками» представлен всесторонний обзор проблем и решений для работы с шумными метками в машинном обучении. Автор, Ясер Шейх, является известным экспертом в области компьютерного зрения и машинного обучения, и эта книга предлагает полное понимание различных определений, теорий, методов и решений для обращения к шумным меткам в машинном обучении. Книга начинается с определения того, что такое шумные метки и их влияние на алгоритмы машинного обучения. Он объясняет, как шумные этикетки могут привести к предвзятым моделям, которые увековечивают ошибки, что приводит к низкой производительности и неверным прогнозам. Затем автор углубляется в теоретические основы машинного обучения с шумными метками, обсуждая основополагающие принципы и математические формулировки, управляющие процессом. Книга охватывает несколько техник работы с шумными метками, включая функции потери, устойчивые к шуму, надежные методы оптимизации и подходы к обучению ансамблей. Эти методы представлены в ясной и сжатой форме, что позволяет читателям легко понимать и применять их в реальных приложениях. Кроме того, книга исследует ограничения и компромиссы каждой техники, обеспечивая сбалансированный взгляд на их эффективность.
''

You may also be interested in:

Machine Learning with Noisy Labels Definitions, Theory, Techniques and Solutions
Machine Learning with Noisy Labels Definitions, Theory, Techniques and Solutions
Machine Learning with Noisy Labels: Definitions, Theory, Techniques and Solutions
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Machine Learning for Beginners A Complete and Phased Beginner’s Guide to Learning and Understanding Machine Learning and Artificial Intelligence Algoritms
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Debugging Machine Learning Models with Python: Develop high-performance, low-bias, and explainable machine learning and deep learning models
Machine Learning for Beginners An Introductory Guide to Learn and Understand Artificial Intelligence, Neural Networks and Machine Learning
Machine Learning in Production: Master the art of delivering robust Machine Learning solutions with MLOps (English Edition)
Building Machine Learning Systems Using Python Practice to Train Predictive Models and Analyze Machine Learning Results
Machine Learning for Business The Ultimate Artificial Intelligence & Machine Learning for Managers, Team Leaders and Entrepreneurs
Applied Machine Learning and High-Performance Computing on AWS: Accelerate the development of machine learning applications following architectural best practices
Serverless Machine Learning with Amazon Redshift ML: Create, train, and deploy machine learning models using familiar SQL commands
Machine Learning Master Machine Learning Fundamentals for Beginners, Business Leaders and Aspiring Data Scientists
Online Machine Learning: A Practical Guide with Examples in Python (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning for Data Streams with Practical Examples in MOA (Adaptive Computation and Machine Learning series)
Machine Learning The Ultimate Guide to Understand AI Big Data Analytics and the Machine Learning’s Building Block Application in Modern Life
Machine Learning for Beginners Build and deploy Machine Learning systems using Python, 2nd Edition
Robust Machine Learning: Distributed Methods for Safe AI (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning: A Guide to PyTorch, TensorFlow, and Scikit-Learn: Mastering Machine Learning With Python
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning with Core ML 2 and Swift A beginner-friendly guide to integrating machine learning into your apps
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Computer Programming This Book Includes Machine Learning for Beginners, Machine Learning with Python, Deep Learning with Python, Python for Data Analysis
Programming With Python 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow
Machine Learning for Finance Master Financial Strategies with Python-Powered Machine Learning
Pragmatic Machine Learning with Python Learn How to Deploy Machine Learning Models in Production
Machine Learning, Animated (Chapman and Hall CRC Machine Learning and Pattern Recognition)
Machine Learning for Beginners A Practical Guide to Understanding and Applying Machine Learning Concepts
Machine Learning for Finance Master Financial Strategies with Python-Powered Machine Learning
Machine Learning for Absolute Beginners An Absolute beginner’s guide to learning and understanding machine learning successfully
Machine Learning with Python The Ultimate Guide to Learn Machine Learning Algorithms. Includes a Useful Section about Analysis, Data Mining and Artificial Intelligence in Business Applications
Machine Learning Tutorial: Machine Learning Simply Easy Learning
Machine Learning The Ultimate Guide to Understand Artificial Intelligence and Big Data Analytics. Learn the Building Block Algorithms and the Machine Learning’s Application in the Modern Life
Machine Learning An In-Depth Beginners Guide into the Essentials of Machine Learning Algorithms
Statistics for Machine Learning Implement Statistical methods used in Machine Learning using Python
Machine Learning Interviews Kickstart Your Machine Learning and Data Career (Final)
Probabilistic Machine Learning: An Introduction (Adaptive Computation and Machine Learning series)