BOOKS - Federated Learning Theory and Practice
Federated Learning Theory and Practice - Lam M. Nguyen, Trong Nghia Hoang, Pin-Yu Chen 2024 EPUB Academic Press/Elsevier BOOKS
1 TON

Views
87254

Telegram
 
Federated Learning Theory and Practice
Author: Lam M. Nguyen, Trong Nghia Hoang, Pin-Yu Chen
Year: 2024
Format: EPUB
File size: 23.4 MB
Language: ENG



Pay with Telegram STARS
Federated Learning Theory and Practice: A Guide to Understanding the Evolution of Technology and Its Impact on Human Society Introduction: In today's rapidly changing world, technology is advancing at an unprecedented rate, transforming every aspect of our lives. From smartphones to self-driving cars, technology has made our lives easier, more connected, and more efficient. However, this rapid evolution also brings about new challenges and concerns, such as privacy, security, and the impact on human relationships. Federated learning theory and practice is a relatively new field that seeks to address these challenges by exploring how technology can be developed and used in a way that benefits humanity while preserving individual freedom and autonomy. This book provides a comprehensive guide to understanding the principles and practices of federated learning, its potential applications, and its implications for society. Chapter 1: The Need for Federated Learning The rapid pace of technological change has created a sense of urgency among scholars, policymakers, and industry leaders to understand the process of technology evolution and its impact on human society. Federated learning theory and practice offers a framework for studying and addressing the challenges posed by technology evolution. This chapter explains why federated learning is essential for survival in a warring state and how it can help us navigate the complexities of modern life. Chapter 2: The Basis of Federated Learning Federated learning is based on the idea that technology should be developed and used in a way that respects individual freedom and autonomy. This means that technology should not be used to control or manipulate people but rather to empower them with knowledge and tools to make informed decisions about their lives.
Federated arning Theory and Practice: A Guide to Understanding the Evolution of Technology and Its Impact on Human Society Введение: В современном быстро меняющемся мире технологии развиваются с беспрецедентной скоростью, трансформируя каждый аспект нашей жизни. От смартфонов до беспилотных автомобилей технологии сделали нашу жизнь проще, подключеннее и эффективнее. Тем не менее, эта быстрая эволюция также вызывает новые проблемы и проблемы, такие как конфиденциальность, безопасность и влияние на человеческие отношения. Теория и практика федеративного обучения - это относительно новая область, которая стремится решить эти проблемы, исследуя, как можно развивать и использовать технологии таким образом, чтобы это приносило пользу человечеству, сохраняя свободу и автономию личности. Эта книга содержит исчерпывающее руководство по пониманию принципов и практики федеративного обучения, его потенциальных применений и его последствий для общества. Глава 1: Необходимость федеративного обучения Быстрые темпы технологических изменений создали у ученых, политиков и лидеров отрасли ощущение срочности понимания процесса эволюции технологий и его влияния на человеческое общество. Теория и практика федеративного обучения предлагает основу для изучения и решения проблем, связанных с развитием технологий. В этой главе объясняется, почему федеративное обучение необходимо для выживания в воюющем государстве и как оно может помочь нам ориентироваться в сложностях современной жизни. Глава 2: Основа федеративного обучения В основе федеративного обучения лежит идея о том, что технология должна разрабатываться и использоваться таким образом, чтобы уважать свободу и автономию личности. Это означает, что технологии не должны использоваться для контроля или манипулирования людьми, а скорее для наделения их знаниями и инструментами для принятия обоснованных решений относительно их жизни.
''

You may also be interested in:

Federated Learning Theory and Practice
Federated Learning: Theory and Practice
Federated Learning Theory and Practice
Learning Deep Learning Theory and Practice of Neural Networks, Computer Vision, NLP, and Transformers using TensorFlow
Learning Deep Learning Theory and Practice of Neural Networks, Computer Vision, NLP, and Transformers using TensorFlow (Rough Cuts)
The Theory and Practice of online learning
Federated Learning (Synthesis Lectures on Artificial Intelligence and Machine Learning)
Foundations of Deep Reinforcement Learning Theory and Practice in Python
Making Sense of Organizational Learning: Putting Theory into Practice
Artificial Intelligence Data Analytics and Robot Learning in Practice and Theory
Standards-Based Learning in Action: Moving from Theory to Practice (A Guide to Implementing Standards-Based Grading, Instruction, and Learning)
Recent Advances in Logo Detection Using Machine Learning Paradigms Theory and Practice
Foundations of Deep Reinforcement Learning Theory and Practice in Python (Rough Cuts)
Recent Advances in Logo Detection Using Machine Learning Paradigms Theory and Practice
Introduction to Machine Learning with Security Theory and Practice Using Python in the Cloud, 2nd Edition
By Tisha Bender - Discussion-Based Online Teaching to Enhance Student Learning: Theory, Practice and Assessment: 1st (first) Edition
Federated Learning Principles, Paradigms, and Applications
Federated Learning From Algorithms to System Implementation
Federated Learning: Principles, Paradigms, and Applications
Federated Learning From Algorithms to System Implementation
Federated Learning Principles, Paradigms, and Applications
Communication Efficient Federated Learning for Wireless Networks
Communication Efficient Federated Learning for Wireless Networks
Communication Efficient Federated Learning for Wireless Networks
Handbook on Federated Learning Advances, Applications and Opportunities
Federated Learning for Future Intelligent Wireless Networks
Handbook on Federated Learning Advances, Applications and Opportunities
Federated Learning for Future Intelligent Wireless Networks
Federated Learning Unlocking the Power of Collaborative Intelligence
Federated Learning Techniques and Its Application in the Healthcare Industry
Federated Learning Unlocking the Power of Collaborative Intelligence
Federated Learning for Smart Communication using IoT Application
Federated Learning Techniques and Its Application in the Healthcare Industry
Federated Learning for Future Intelligent Wireless Networks
Artificial Intelligence Using Federated Learning Fundamentals, Challenges, and Applications
Artificial Intelligence Using Federated Learning Fundamentals, Challenges, and Applications
Federated Learning for Multimedia Data Processing and Security in Industry 5.0
Federated Deep Learning for Healthcare A Practical Guide with Challenges and Opportunities
Federated Deep Learning for Healthcare A Practical Guide with Challenges and Opportunities
Advancing Software Engineering Through AI, Federated Learning, and Large Language Models