
BOOKS - Federated Learning Principles, Paradigms, and Applications

Federated Learning Principles, Paradigms, and Applications
Author: Jayakrushna Sahoo, Mariya Ouaissa, Akarsh K. Nair
Year: 2025
Format: PDF
File size: 17.4 MB
Language: ENG

Year: 2025
Format: PDF
File size: 17.4 MB
Language: ENG

Federated learning principles paradigms and applications The book "Federated Learning Principles Paradigms and Applications" is a comprehensive guide to understanding the principles and practices of federated learning, a decentralized approach to machine learning that is gaining popularity due to its potential to address privacy and data security concerns while still achieving high levels of model accuracy. The book covers the fundamental concepts of federated learning, including the principles and paradigms that govern this field, as well as practical applications in various industries such as healthcare, finance, and education. The book begins by introducing the reader to the concept of federated learning and its importance in today's technology landscape. It explains how traditional centralized machine learning approaches can be vulnerable to data breaches and other security risks, and how federated learning offers a more secure and private alternative. The authors then delve into the key principles of federated learning, including data decentralization, communication efficiency, and privacy protection, providing readers with a solid foundation for understanding the rest of the book. Next, the book explores the different paradigms of federated learning, including horizontal federated learning, vertical federated learning, and multi-task federated learning.
Парадигмы и приложения принципов федеративного обучения Книга «Парадигмы и приложения принципов федеративного обучения» представляет собой всеобъемлющее руководство по пониманию принципов и практики федеративного обучения, децентрализованного подхода к машинному обучению, который набирает популярность благодаря своему потенциалу для решения проблем конфиденциальности и безопасности данных при одновременном достижении высокого уровня точности модели. Книга охватывает фундаментальные концепции федеративного обучения, включая принципы и парадигмы, регулирующие эту область, а также практические применения в различных отраслях, таких как здравоохранение, финансы и образование. Книга начинается с знакомства читателя с концепцией федеративного обучения и ее важностью в современном технологическом ландшафте. В нем объясняется, как традиционные подходы к централизованному машинному обучению могут быть уязвимы к утечкам данных и другим рискам безопасности, и как объединенное обучение предлагает более безопасную и частную альтернативу. Затем авторы углубляются в ключевые принципы федеративного обучения, включая децентрализацию данных, эффективность коммуникации и защиту конфиденциальности, предоставляя читателям прочную основу для понимания остальной части книги. Далее в книге рассматриваются различные парадигмы федеративного обучения, включая горизонтальное федеративное обучение, вертикальное федеративное обучение и многозадачное федеративное обучение.
''
