BOOKS - Deep Learning at Scale At the Intersection of Hardware, Software, and Data (F...
Deep Learning at Scale At the Intersection of Hardware, Software, and Data (Final Release) - Suneeta Mall 2024 /RETAIL PDF | EPUB RETAIL COPY O’Reilly Media, Inc. BOOKS
1 TON

Views
33070

Telegram
 
Deep Learning at Scale At the Intersection of Hardware, Software, and Data (Final Release)
Author: Suneeta Mall
Year: 2024
Format: /RETAIL PDF | EPUB RETAIL COPY
File size: 35.6 MB
Language: ENG



Pay with Telegram STARS
Deep Learning at Scale At the Intersection of Hardware Software and Data Final Release is a book that explores the intersection of hardware, software, and data in deep learning, highlighting the challenges and opportunities that come with scaling up deep learning models to meet the needs of a rapidly changing world. The book provides a comprehensive overview of the current state of deep learning research and its applications in various fields such as computer vision, natural language processing, and speech recognition. It also delves into the technical aspects of deep learning, including the development of new algorithms and architectures, and the use of specialized hardware and software to accelerate training and inference. Additionally, the book discusses the ethical implications of deep learning and its potential impact on society. The book begins by examining the history of deep learning and how it has evolved over time, from its early beginnings to the current state-of-the-art techniques used today. It then delves into the fundamental principles of deep learning, including the different types of neural networks and their applications, and the role of data in driving the success of deep learning models. The book also explores the challenges of scaling up deep learning models, including the need for large amounts of data, computational power, and specialized hardware.
Deep arning at Scale At The Intersection of Hardware Software and Data Final Release - книга, в которой исследуется пересечение аппаратного обеспечения, программного обеспечения и данных в глубоком обучении, освещаются проблемы и возможности, возникающие при масштабировании моделей глубокого обучения для удовлетворения потребностей быстро меняющегося мира. В книге представлен всесторонний обзор текущего состояния исследований в области глубокого обучения и его приложений в различных областях, таких как компьютерное зрение, обработка естественного языка и распознавание речи. Он также углубляется в технические аспекты глубокого обучения, включая разработку новых алгоритмов и архитектур, а также использование специализированного аппаратного и программного обеспечения для ускорения обучения и вывода. Кроме того, в книге обсуждаются этические последствия глубокого обучения и его потенциальное влияние на общество. Книга начинается с изучения истории глубокого обучения и того, как оно развивалось с течением времени, от его ранних истоков до современных современных методов, используемых сегодня. Затем он углубляется в фундаментальные принципы глубокого обучения, включая различные типы нейронных сетей и их приложений, а также роль данных в достижении успеха моделей глубокого обучения. В книге также рассматриваются проблемы масштабирования моделей глубокого обучения, включая потребность в больших объемах данных, вычислительной мощности и специализированном оборудовании.
''

You may also be interested in:

Deep Learning at Scale (Third Early Release)
Deep Learning Systems Algorithms, Compilers, and Processors for Large-Scale Production
Deep Learning at Scale At the Intersection of Hardware, Software, and Data (Third Early Release)
Deep Learning at Scale At the Intersection of Hardware, Software, and Data (Final Release)
Deep Learning at Scale At the Intersection of Hardware, Software, and Data (Third Early Release)
Deep Learning at Scale At the Intersection of Hardware, Software, and Data (Final Release)
Deep Learning for Data Architects: Unleash the power of Python|s deep learning algorithms (English Edition)
Java Deep Learning Projects: Implement 10 real-world deep learning applications using Deeplearning4j and open source APIs
Deep Learning for the Life Sciences Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More First Edition
Building Scalable Deep Learning Pipelines on AWS Develop, Train, and Deploy Deep Learning Models
Getting started with Deep Learning for Natural Language Processing Learn how to build NLP applications with Deep Learning
Deep Learning fur die Biowissenschaften Einsatz von Deep Learning in Genomik, Biophysik, Mikroskopie und medizinischer Analyse
Anatomy of Deep Learning Principles: Writing a deep learning library from scratch (Japanese Edition)
Deep Learning for Finance Creating Machine & Deep Learning Models for Trading in Python
Deep Learning for Data Architects Unleash the power of Python|s deep learning algorithms
Deep Learning for the Life Sciences Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More
Deep Learning for Finance Creating Machine & Deep Learning Models for Trading in Python
Deep Learning for Data Architects Unleash the power of Python|s deep learning algorithms
Programming PyTorch for Deep Learning Creating and Deploying Deep Learning Applications First Edition
Deep Learning With Python Develop Deep Learning Models on Theano and TensorFlow using Keras
Practical Mathematics for AI and Deep Learning: A Concise yet In-Depth Guide on Fundamentals of Computer Vision, NLP, Complex Deep Neural Networks and Machine Learning (English Edition)
Deep Learning Beginner’s Guide to Learn the Realms of Deep Learning from A-Z
Mastering Deep Learning: A Comprehensive Guide to Master Deep Learning
Mastering Deep Learning A Comprehensive Guide to Master Deep Learning
Mastering Deep Learning A Comprehensive Guide to Master Deep Learning
Hands-on Deep Learning A Guide to Deep Learning with Projects and Applications
Neural Networks and Deep Learning Neural Networks & Deep Learning, Deep Learning, Big Data
Fundamentals of Machine & Deep Learning A Complete Guide on Python Coding for Machine and Deep Learning with Practical Exercises for Learners (Sachan Book 102)
Deep Learning with Python The Crash Course for Beginners to Learn the Basics of Deep Learning with Python Using TensorFlow, Keras and PyTorch
Deep Learning with Python Comprehensive Beginners Guide to Learn and Understand the Realms of Deep Learning with Python
Beginning with Deep Learning Using TensorFlow A Beginners Guide to TensorFlow and Keras for Practicing Deep Learning Principle
Deep Learning and Convolutional Neural Networks for Medical Image Computing: Precision Medicine, High Performance and Large-Scale Datasets (Advances in Computer Vision and Pattern Recognition)
Deep Learning With Python Simple and Effective Tips and Tricks to Learn Deep Learning with Python
Google JAX Essentials A quick practical learning of blazing-fast library for Machine Learning and Deep Learning projects
Deep Learning With Python Advanced and Effective Strategies of Using Deep Learning with Python Theories
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions
Artificial Intelligence What You Need to Know About Machine Learning, Robotics, Deep Learning, Recommender Systems, Internet of Things, Neural Networks, Reinforcement Learning, and Our Future
Deep Machine Learning Complete Tips and Tricks to Deep Machine Learning
Deep Learning with Python The Ultimate Beginners Guide for Deep Learning with Python