BOOKS - PROGRAMMING - Applied Machine Learning Using mlr3 in R
Applied Machine Learning Using mlr3 in R - Bernd Bischl, Raphael Sonabend, Lars Kotthoff 2024 PDF CRC Press BOOKS PROGRAMMING
1 TON

Views
42934

Telegram
 
Applied Machine Learning Using mlr3 in R
Author: Bernd Bischl, Raphael Sonabend, Lars Kotthoff
Year: 2024
Format: PDF
File size: 37.0 MB
Language: ENG



Pay with Telegram STARS
development. Book Plot Summary: Applied Machine Learning Using mlr3 in R Author: Bernd Bischl, Raphael Sonabend, Lars Kotthoff CRC Press 2024 356 The book "Applied Machine Learning Using mlr3 in R" provides an in-depth understanding of the process of technology evolution, highlighting the significance of developing a personal paradigm for perceiving the technological advancements in modern knowledge. This paradigm shift is crucial for the survival of humanity and the unification of warring states. The author presents a comprehensive overview of flexible and robust Machine Learning methods using the mlr3 ecosystem in R, enabling readers to implement these techniques in their respective fields. The book covers various key topics such as building and evaluating predictive models, hyperparameter tuning, and extending the mlr3 ecosystem with custom learners and pipeline components. It caters to researchers, practitioners, and graduate students who use Machine Learning or are interested in exploring its potential. The text is written in a simplified and accessible format, making it easy for readers to understand and analyze the complex concepts in Machine Learning. The book is divided into chapters, each focusing on a specific aspect of Machine Learning, starting with basic tasks such as building and evaluating a predictive model.
разработка. Краткое изложение сюжета книги: Прикладное машинное обучение с использованием mlr3 в R Автор: Бернд Бишл, Рафаэль Сонабенд, Ларс Коттхофф CRC Press 2024 356 Книга «Прикладное машинное обучение с использованием mlr3 в R» дает глубокое понимание процесса эволюции технологии, подчеркивая важность разработки личной парадигмы для восприятие технологических достижений в современном знании. Эта смена парадигмы имеет решающее значение для выживания человечества и объединения враждующих государств. Автор представляет всесторонний обзор гибких и надежных методов машинного обучения с использованием экосистемы mlr3 в R, что позволяет читателям внедрять эти методы в соответствующих областях. Книга охватывает различные ключевые темы, такие как построение и оценка прогностических моделей, настройка гиперпараметров и расширение экосистемы mlr3 с помощью пользовательских учеников и компонентов конвейера. Он обслуживает исследователей, практиков и аспирантов, которые используют машинное обучение или заинтересованы в изучении его потенциала. Текст написан в упрощенном и доступном формате, что позволяет читателям легко понять и проанализировать сложные концепции машинного обучения. Книга разделена на главы, каждая из которых посвящена конкретному аспекту машинного обучения, начиная с базовых задач, таких как построение и оценка прогнозирующей модели.
sviluppo. Riassunto della trama del libro: Apprendimento automatico applicato con mlr3 in R Autore: Bernd Bishl, Raphael Sonaband, Lars Cotthoff CRC Press 2024 356 Il libro «Apprendimento automatico applicato con mlr3 in R» fornisce una profonda comprensione dell'evoluzione tecnologica, sottolineando l'importanza di sviluppare un paradigma personale per la percezione dei progressi tecnologici nella conoscenza moderna Questo cambiamento di paradigma è fondamentale per la sopravvivenza dell'umanità e per l'unione degli Stati in conflitto. L'autore fornisce una panoramica completa delle tecniche di apprendimento automatico flessibili e affidabili utilizzando l'ecosistema mlr3 in R, che consente ai lettori di implementare questi metodi nelle rispettive aree. Il libro comprende diversi temi chiave, come la costruzione e la valutazione di modelli predittivi, l'impostazione di iperparametri e l'espansione dell'ecosistema mlr3 attraverso gli studenti personalizzati e i componenti della catena di montaggio. Serve ricercatori, professionisti e laureati che utilizzano l'apprendimento automatico o sono interessati a studiare il suo potenziale. Il testo è scritto in un formato semplificato e accessibile che consente ai lettori di comprendere e analizzare facilmente i complessi concetti di apprendimento automatico. Il libro è suddiviso in capitoli, ciascuno dei quali riguarda un aspetto specifico dell'apprendimento automatico, partendo da attività di base come la costruzione e la valutazione di un modello predittivo.
Entwicklung. Zusammenfassung der Handlung des Buches: Applied Machine arning using mlr3 in R Autor: Bernd Bischl, Raphael Sonabend, Lars Kotthoff CRC Veröffentlichungsdatum: [Veröffentlichungsdatum] 356 Das Buch Applied Machine arning using mlr3 in R gibt einen tiefen Einblick in den Prozess der Technologieentwicklung und betont die Bedeutung der Entwicklung eines persönlichen Paradigmas für die Wahrnehmung von Technologie Errungenschaften des modernen Wissens. Dieser Paradigmenwechsel ist entscheidend für das Überleben der Menschheit und die Vereinigung der verfeindeten Staaten. Der Autor gibt einen umfassenden Überblick über flexible und robuste Methoden des maschinellen rnens unter Verwendung des mlr3-Ökosystems in R und ermöglicht es den sern, diese Methoden in ihren jeweiligen Bereichen zu implementieren. Das Buch behandelt verschiedene Schlüsselthemen wie den Aufbau und die Bewertung von Vorhersagemodellen, die Anpassung von Hyperparametern und die Erweiterung des mlr3-Ökosystems mit benutzerdefinierten rnenden und Pipeline-Komponenten. Es dient Forschern, Praktikern und Doktoranden, die maschinelles rnen nutzen oder daran interessiert sind, sein Potenzial zu erforschen. Der Text ist in einem vereinfachten und zugänglichen Format verfasst, das es den sern ermöglicht, komplexe Konzepte des maschinellen rnens leicht zu verstehen und zu analysieren. Das Buch ist in Kapitel unterteilt, die sich jeweils mit einem bestimmten Aspekt des maschinellen rnens befassen, beginnend mit grundlegenden Aufgaben wie dem Aufbau und der Bewertung eines Vorhersagemodells.
''
개발. 예약 플롯 요약: R 저자에서 mlr3을 사용한 응용 머신 러닝: Bernd Bischl, Raphael Sonabend, Lars Kottoff CRC 출판 날짜: [출판 날짜] 356 "R에서 mlr3을 사용한 응용 기계 학습" 책은 현대 지식의 기술 발전에 대한 인식을위한 개인 패러다임 개발의 중요성을 강조하는 기술 진화 과정에 대한 심층적 인 이해를 제공합니다. 이 패러다임 전환은 인류의 생존과 전쟁 국가의 통일에 중요합니다. 저자는 R의 mlr3 에코 시스템을 사용하여 유연하고 강력한 머신 러닝 방법에 대한 포괄적 인 개요를 제공하여 독자가 각 분야에서 이러한 방법을 구현할 수 있도록합니다. 이 책은 예측 모델 구축 및 평가, 하이퍼 매개 변수 조정, 맞춤형 학습자 및 파이프 라인 구성 요소로 mlr3 생태계 확장과 같은 다양한 주요 주제를 다룹니다. 기계 학습을 사용하거나 잠재력을 탐구하는 데 관심이있는 연구원, 실무자 및 대학원생에게 서비스를 제공합니다. 텍스트는 간단하고 액세스 가능한 형식으로 작성되어 독자가 복잡한 머신 러닝 개념을 쉽게 이해하고 분석 할 수 있습니다. 이 책은 장으로 나뉘며, 각 장은 예측 모델 구축 및 평가와 같은 기본 작업부터 시작하여 머신 러닝의 특정 측면에 중점을 둡니다.
開発。ブックプロットの概要:R著者でmlr3を使用した応用機械学習: Bernd Bischl、 Raphael Sonabend、 Lars Kottoff CRCプレス発行日: [発行日]356 「mlr3 in Rを用いた応用機械学習」は、技術進化の過程を深く理解し、現代の知識における技術の進歩を認識するための個人的パラダイムを開発することの重要性を強調している。このパラダイムシフトは、人類の存続と戦争状態の統一にとって極めて重要です。著者は、Rのmlr3エコシステムを使用した柔軟で堅牢な機械学習方法の包括的な概要を提供し、読者はそれぞれの分野でこれらの方法を実装することができます。この本では、予測モデルの構築と評価、ハイパーパラメータのチューニング、カスタム学習者やパイプラインのコンポーネントを使用したmlr3エコシステムの拡張など、さまざまな重要なトピックを取り上げています。機械学習を使用しているか、その可能性を探求することに興味がある研究者、実践者、大学院生にサービスを提供しています。テキストは簡略化されたアクセス可能な形式で書かれており、読者は複雑な機械学習の概念を簡単に理解し分析することができます。この本は章に分かれており、それぞれ機械学習の特定の側面に焦点を当て、予測モデルの構築と評価などの基本的なタスクから始まります。
開發。本書情節摘要:R中使用mlr3的應用機器學習作者:Bernd Bischl,Raphael Sonabend,Lars Cottoff CRC出版日期:[出版日期]356本書「R中使用mlr3的應用機器學習」提供了對技術演變過程的深刻見解,強調了開發個人範式的重要性對現代知識的技術進步的看法。這種範式轉變對於人類的生存和交戰國家的統一至關重要。作者對R中使用mlr3生態系統的靈活而可靠的機器學習方法進行了全面概述,使讀者能夠將這些技術引入相關領域。該書涵蓋了各種關鍵主題,例如構建和評估預測模型,設置超參數以及使用定制學徒和管道組件擴展mlr3生態系統。它為使用機器學習或有興趣探索其潛力的研究人員,從業人員和研究生提供服務。文本以簡化且易於訪問的格式編寫,使讀者可以輕松理解和分析復雜的機器學習概念。該書分為幾章,每章都涉及機器學習的特定方面,從基本任務開始,例如構建和評估預測模型。

You may also be interested in:

Applied Machine Learning and High-Performance Computing on AWS: Accelerate the development of machine learning applications following architectural best practices
Hands-On Unsupervised Learning Using Python: How to Build Applied Machine Learning Solutions from Unlabeled Data
Applied Machine Learning
Applied Machine Learning Using mlr3 in R
Applied Machine Learning Using mlr3 in R
Applied Machine Learning Using mlr3 in R
Applied Machine Learning and AI for Engineers
Machine Learning An Applied Mathematics Introduction
Applied Machine Learning A practical guide from Novice to Pro
Applied Machine Learning: A practical guide from Novice to Pro.
Applied Software Development with Python & Machine Learning
Machine Learning Toolbox for Social Scientists: Applied Predictive Analytics with R
Machine Learning Toolbox for Social Scientists Applied Predictive Analytics with R
Applied Text Analysis with Python Enabling Language Aware Data Products with Machine Learning
Applied Machine Learning for Smart Data Analysis (Computational Intelligence in Engineering Problem Solving)
Applied Machine Learning Solutions with Python Production-ready ML Projects Using Cutting-edge Libraries
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Machine Learning for Beginners A Complete and Phased Beginner’s Guide to Learning and Understanding Machine Learning and Artificial Intelligence Algoritms
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Debugging Machine Learning Models with Python: Develop high-performance, low-bias, and explainable machine learning and deep learning models
Machine Learning for Business The Ultimate Artificial Intelligence & Machine Learning for Managers, Team Leaders and Entrepreneurs
Building Machine Learning Systems Using Python Practice to Train Predictive Models and Analyze Machine Learning Results
Machine Learning in Production: Master the art of delivering robust Machine Learning solutions with MLOps (English Edition)
Machine Learning for Beginners An Introductory Guide to Learn and Understand Artificial Intelligence, Neural Networks and Machine Learning
Serverless Machine Learning with Amazon Redshift ML: Create, train, and deploy machine learning models using familiar SQL commands
Online Machine Learning: A Practical Guide with Examples in Python (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning Master Machine Learning Fundamentals for Beginners, Business Leaders and Aspiring Data Scientists
Machine Learning for Data Streams with Practical Examples in MOA (Adaptive Computation and Machine Learning series)
Machine Learning The Ultimate Guide to Understand AI Big Data Analytics and the Machine Learning’s Building Block Application in Modern Life
Machine Learning for Beginners Build and deploy Machine Learning systems using Python, 2nd Edition
Machine Learning with Core ML 2 and Swift A beginner-friendly guide to integrating machine learning into your apps
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning: A Guide to PyTorch, TensorFlow, and Scikit-Learn: Mastering Machine Learning With Python
Robust Machine Learning: Distributed Methods for Safe AI (Machine Learning: Foundations, Methodologies, and Applications)
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Computer Programming This Book Includes Machine Learning for Beginners, Machine Learning with Python, Deep Learning with Python, Python for Data Analysis
Programming With Python 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow
Machine Learning for Finance Master Financial Strategies with Python-Powered Machine Learning