BOOKS - Federated Deep Learning for Healthcare A Practical Guide with Challenges and ...
Federated Deep Learning for Healthcare A Practical Guide with Challenges and Opportunities - Amandeep Kaur, Chetna Kaushal, Md. Mehedi Hassan, Si Thu Aung 2025 PDF CRC Press BOOKS
1 TON

Views
98553

Telegram
 
Federated Deep Learning for Healthcare A Practical Guide with Challenges and Opportunities
Author: Amandeep Kaur, Chetna Kaushal, Md. Mehedi Hassan, Si Thu Aung
Year: 2025
Format: PDF
File size: 10.1 MB
Language: ENG



Pay with Telegram STARS
Federated Deep Learning for Healthcare: A Practical Guide with Challenges and Opportunities ===================================================================== The healthcare industry has been revolutionized by the advent of deep learning, a subset of machine learning that uses neural networks to analyze complex data sets and make accurate predictions. However, the use of deep learning in healthcare also raises several challenges, such as data privacy and security concerns, the need for high-quality labeled data, and the lack of interpretability of the models. Federated deep learning offers a solution to these challenges by allowing multiple parties to collaborate on training a shared model while maintaining control over their own data. In this practical guide, we will explore the opportunities and challenges of federated deep learning in healthcare, providing readers with the knowledge they need to successfully implement this technology in their organizations. Introduction ------------ Federated deep learning is a decentralized approach to machine learning that enables multiple parties to jointly train a model on their collective data without sharing the data itself.
Federated Deep arning for Healthcare: Практическое руководство с проблемами и возможностями = Индустрия здравоохранения была революционизирована благодаря появлению глубокого обучения, подмножества машинного обучения, которое использует нейронные сети для анализа сложных наборов данных и составления точных прогнозов. Тем не менее, использование глубокого обучения в здравоохранении также поднимает несколько проблем, таких как проблемы конфиденциальности и безопасности данных, необходимость в высококачественных маркированных данных и отсутствие интерпретируемости моделей. Объединенное глубокое обучение предлагает решение этих проблем, позволяя нескольким сторонам совместно работать над обучением общей модели, сохраняя при этом контроль над собственными данными. В этом практическом руководстве мы рассмотрим возможности и проблемы федеративного глубокого обучения в здравоохранении, предоставляя читателям знания, необходимые для успешного внедрения этой технологии в своих организациях. Введение Федеративное глубокое обучение - это децентрализованный подход к машинному обучению, который позволяет нескольким сторонам совместно обучать модель на основе своих коллективных данных без совместного использования самих данных.
''

You may also be interested in:

Federated Learning Theory and Practice
Federated Learning: Theory and Practice
Deep Learning With Python Simple and Effective Tips and Tricks to Learn Deep Learning with Python
Federated Learning: Principles, Paradigms, and Applications
Federated Learning Principles, Paradigms, and Applications
Federated Learning Principles, Paradigms, and Applications
Federated Learning From Algorithms to System Implementation
Federated Learning From Algorithms to System Implementation
Google JAX Essentials A quick practical learning of blazing-fast library for Machine Learning and Deep Learning projects
Deep Learning With Python Advanced and Effective Strategies of Using Deep Learning with Python Theories
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions
Handbook on Federated Learning Advances, Applications and Opportunities
Federated Learning Unlocking the Power of Collaborative Intelligence
Communication Efficient Federated Learning for Wireless Networks
Federated Learning for Future Intelligent Wireless Networks
Communication Efficient Federated Learning for Wireless Networks
Federated Learning for Future Intelligent Wireless Networks
Communication Efficient Federated Learning for Wireless Networks
Federated Learning for Smart Communication using IoT Application
Federated Learning for Future Intelligent Wireless Networks
Federated Learning Unlocking the Power of Collaborative Intelligence
Handbook on Federated Learning Advances, Applications and Opportunities
Artificial Intelligence What You Need to Know About Machine Learning, Robotics, Deep Learning, Recommender Systems, Internet of Things, Neural Networks, Reinforcement Learning, and Our Future
Artificial Intelligence Using Federated Learning Fundamentals, Challenges, and Applications
Federated Learning for Multimedia Data Processing and Security in Industry 5.0
Artificial Intelligence Using Federated Learning Fundamentals, Challenges, and Applications
Advancing Software Engineering Through AI, Federated Learning, and Large Language Models
Advancing Software Engineering Through AI, Federated Learning, and Large Language Models
Deep Machine Learning Complete Tips and Tricks to Deep Machine Learning
Deep Learning with Python The Ultimate Beginners Guide for Deep Learning with Python
Learning and Operating Presto Fast Federated SQL Analytics (Early Release)
Model Optimization Methods for Efficient and Edge AI Federated Learning Architectures, Frameworks and Applications
Model Optimization Methods for Efficient and Edge AI Federated Learning Architectures, Frameworks and Applications
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Deep Learning with Python The ultimate beginners guide to Learn Deep Learning with Python Step by Step
Deep Learning for Natural Language Processing Develop Deep Learning Models for Natural Language in Python
Python Deep Learning: Understand how deep neural networks work and apply them to real-world tasks
Deep Learning via Rust State of the Art Deep Learning in Rust
Deep Medicine How Artificial Intelligence Can Make Healthcare Human Again