BOOKS - Optimizing Generative AI Workloads for Sustainability Balancing Performance a...
Optimizing Generative AI Workloads for Sustainability Balancing Performance and Environmental Impact in Generative AI - Ishneet Kaur Dua, Parth Girish Patel 2024 PDF Apress BOOKS
1 TON

Views
3687

Telegram
 
Optimizing Generative AI Workloads for Sustainability Balancing Performance and Environmental Impact in Generative AI
Author: Ishneet Kaur Dua, Parth Girish Patel
Year: 2024
Format: PDF
File size: 13.3 MB
Language: ENG



Pay with Telegram STARS
The book "Optimizing Generative AI Workloads for Sustainability Balancing Performance and Environmental Impact in Generative AI" explores the challenges of balancing performance and environmental impact in generative AI workloads, highlighting the need for sustainable development in the field of artificial intelligence. The author argues that the current pace of technological progress is unsustainable and poses a threat to humanity's survival. To address this challenge, the book proposes a personal paradigm for perceiving the technological process of developing modern knowledge as the basis for the survival of humanity and the survival of the unification of people in a warring state. The book begins by discussing the evolution of technology and its impact on society, highlighting the exponential growth of computing power and data storage over the past few decades. This growth has led to an explosion of digital information and the emergence of new forms of communication, such as social media and online platforms. However, it also has created new challenges, such as the proliferation of misinformation and the erosion of privacy. The author then delves into the concept of generative AI, which uses machine learning algorithms to create new content, such as images, videos, and text. While these technologies have revolutionized industries such as entertainment, advertising, and healthcare, they also consume vast amounts of energy and resources, contributing to climate change and environmental degradation.
Книга «Оптимизация генерирующих рабочих нагрузок ИИ для устойчивого баланса производительности и воздействия на окружающую среду в генерирующем ИИ» исследует проблемы баланса производительности и воздействия на окружающую среду в генерирующих рабочих нагрузках ИИ, подчеркивая необходимость устойчивого развития в области искусственного интеллекта. Автор утверждает, что нынешние темпы технического прогресса неустойчивы и представляют угрозу выживанию человечества. Для решения этой задачи в книге предлагается персональная парадигма восприятия технологического процесса развития современного знания как основы выживания человечества и выживания объединения людей в воюющем государстве. Книга начинается с обсуждения эволюции технологий и их влияния на общество, подчеркивая экспоненциальный рост вычислительных мощностей и хранилищ данных за последние несколько десятилетий. Этот рост привел к взрыву цифровой информации и появлению новых форм коммуникации, таких как социальные сети и онлайн-платформы. Однако это также создало новые проблемы, такие как распространение дезинформации и эрозия частной жизни. Затем автор углубляется в концепцию генеративного ИИ, который использует алгоритмы машинного обучения для создания нового контента, такого как изображения, видео и текст. Хотя эти технологии произвели революцию в таких отраслях, как развлечения, реклама и здравоохранение, они также потребляют огромное количество энергии и ресурсов, способствуя изменению климата и ухудшению состояния окружающей среды.
''

You may also be interested in:

Optimizing Generative AI Workloads for Sustainability Balancing Performance and Environmental Impact in Generative AI
Optimizing Generative AI Workloads for Sustainability Balancing Performance and Environmental Impact in Generative AI
Intensive Agriculture and Sustainability: A Farming Systems Analysis (Sustainability and the Environment)
Chief Sustainability Officers At Work: How CSOs Build Successful Sustainability and ESG Strategies
Generative Analysis: The Power of Generative AI for Object-Oriented Software Engineering with UML
Generative AI and LLMs Natural Language Processing and Generative Adversarial Networks
Generative AI and LLMs Natural Language Processing and Generative Adversarial Networks
A Generative Journey to AI Mastering the foundations and frontiers of generative deep learning
Traditional Ecological Knowledge: Learning from Indigenous Practices for Environmental Sustainability (New Directions in Sustainability and Society)
Generative AI in Practice: 100+ Amazing Ways Generative Artificial Intelligence is Changing Business and Society
Generative Analysis The Power of Generative AI for Object-Oriented Software Engineering with UML (Early Release)
Generative AI in Practice 100+ Amazing Ways Generative Artificial Intelligence is Changing Business and Society
Generative Analysis The Power of Generative AI for Object-Oriented Software Engineering with UML (Early Release)
Generative Artificial Intelligence Exploring the Power and Potential of Generative AI
Generative Artificial Intelligence Exploring the Power and Potential of Generative AI
Anti-Crisis Approach to the Provision of the Environmental Sustainability of Economy (Approaches to Global Sustainability, Markets, and Governance)
Building Generative AI Services with FastAPI A Practical Approach to Developing Context Rich Generative AI Applications (Second Early Release)
Building Generative AI Services with FastAPI A Practical Approach to Developing Context Rich Generative AI Applications (Second Early Release)
Enterprise GENERATIVE AI Well Architected Framework and Patterns: An Architect|s Real-life Guide to Adopting Generative AI in Enterprises at Scale
Building Generative AI Services with FastAPI A Practical Approach to Developing Context Rich Generative AI Applications (5th Early Release)
Enterprise Generative AI Well Architected Framework & Patterns An Architect|s Real-life Guide to Adopting Generative AI in Enterprises at Scale
Enterprise Generative AI Well Architected Framework & Patterns An Architect|s Real-life Guide to Adopting Generative AI in Enterprises at Scale
Kleine generative Syntax des Deutschen: I. Traditionelle Syntax und generative Syntaxtheorie (Germanistische Arbeitshefte, 11) (German Edition)
Creative Prototyping with Generative AI: Augmenting Creative Workflows with Generative AI (Design Thinking)
Hyperautomation with Generative AI Learn how Hyperautomation and Generative AI can help you transform your business and create new value
Hyperautomation with Generative AI Learn how Hyperautomation and Generative AI can help you transform your business and create new value
Enterprise Automation with Python Automate Excel, Web, Documents, Emails, and Various Workloads with Easy-to-code Python Scripts
Managing Environmental Conflict: An Earth Institute Sustainability Primer (Columbia University Earth Institute Sustainability Primers)
Ultimate Generative AI Solutions on Google Cloud Practical Strategies for Building and Scaling Generative AI Solutions with Google Cloud Tools, Langchain, RAG, and LLMOps
Generative AI with Amazon Bedrock: Build, scale, and secure generative AI applications using Amazon Bedrock
An Agenda for Western Balkans: From Elite Politics to Social Sustainability: From Elite Politics to Social Sustainability.
Beyond Optimizing: a Study of Rational Choice
Instant Optimizing Embedded Systems Using Busybox
Optimizing Citrix XenDesktop for High Performance
Effective MySQL Optimizing SQL Statements
Optimizing Metabolic Status for the Hospitalized Patient
Optimizing Cloud Native Java, 2nd Edition
Optimizing Health Monitoring Systems With Wireless Technology
Linux Red Hat. Securing and Optimizing Part 1
Principles of IVF Laboratory Practice: Optimizing Performance and Outcomes