BOOKS - Building Generative AI Services with FastAPI A Practical Approach to Developi...
Building Generative AI Services with FastAPI A Practical Approach to Developing Context Rich Generative AI Applications (5th Early Release) - Ali Parandeh 2024-12-04 EPUB O’Reilly Media, Inc. BOOKS
1 TON

Views
84300

Telegram
 
Building Generative AI Services with FastAPI A Practical Approach to Developing Context Rich Generative AI Applications (5th Early Release)
Author: Ali Parandeh
Year: 2024-12-04
Format: EPUB
File size: 23.0 MB
Language: ENG



Pay with Telegram STARS
Book Description: Building Generative AI Services with FastAPI: A Practical Approach to Developing Context-Rich Generative AI Applications, 5th Early Release, is a comprehensive guide to creating generative AI services using FastAPI. This book covers the development of context-rich generative AI applications that can be used in various industries such as healthcare, finance, and education. The book provides practical approaches to developing these applications, including the use of machine learning algorithms and natural language processing techniques. It also discusses the importance of understanding the technological process of developing modern knowledge and its impact on human society. The book begins by introducing the concept of generative AI and its potential applications in different industries. It then delves into the details of FastAPI, an open-source framework for building web APIs, and how it can be used to develop generative AI services. The authors provide step-by-step instructions on how to build these services, from data preparation to deployment. They also discuss the challenges of developing generative AI applications and offer solutions to overcome them. The book's main focus is on developing context-rich generative AI applications, which involve using machine learning algorithms and natural language processing techniques to create personalized content for users. The authors explain how to use these techniques to build applications that can understand user intent and generate relevant content based on user input. They also discuss the importance of understanding the context of the user's request and how to use this information to improve the accuracy of the generated content. The book also covers the ethical implications of developing generative AI applications and the need for a personal paradigm for perceiving the technological process of developing modern knowledge.
Создание услуг генеративного ИИ с помощью FastAPI: Практический подход к разработке контекстно-богатых приложений генеративного ИИ, 5-й ранний выпуск, является всеобъемлющим руководством по созданию услуг генеративного ИИ с использованием FastAPI. Эта книга охватывает разработку контекстно-богатых генеративных приложений ИИ, которые можно использовать в различных отраслях, таких как здравоохранение, финансы и образование. В книге приведены практические подходы к разработке этих приложений, включая использование алгоритмов машинного обучения и техник обработки естественного языка. В нем также обсуждается важность понимания технологического процесса развития современных знаний и его влияния на человеческое общество. Книга начинается с введения понятия генеративного ИИ и его потенциальных применений в разных отраслях. Затем он углубляется в детали FastAPI, фреймворка с открытым исходным кодом для создания веб-API, и в то, как его можно использовать для разработки генерирующих ИИ-сервисов. Авторы предоставляют пошаговые инструкции по созданию этих сервисов, от подготовки данных до развертывания. Они также обсуждают проблемы разработки генеративных приложений ИИ и предлагают решения для их преодоления. Основное внимание в книге уделяется разработке контекстно-богатых генеративных AI-приложений, которые предполагают использование алгоритмов машинного обучения и техник обработки естественного языка для создания персонализированного контента для пользователей. Авторы объясняют, как использовать эти методы для создания приложений, которые могут понять намерения пользователя и генерировать соответствующий контент на основе пользовательского ввода. Они также обсуждают важность понимания контекста запроса пользователя и того, как использовать эту информацию для повышения точности генерируемого контента. Книга также освещает этические последствия разработки генеративных приложений ИИ и необходимость персональной парадигмы восприятия технологического процесса развития современных знаний.
''

You may also be interested in:

Building Generative AI Services with FastAPI A Practical Approach to Developing Context Rich Generative AI Applications (Second Early Release)
Building Generative AI Services with FastAPI A Practical Approach to Developing Context Rich Generative AI Applications (Second Early Release)
Building Generative AI Services with FastAPI A Practical Approach to Developing Context Rich Generative AI Applications (5th Early Release)
Building Generative AI Services with FastAPI
Getting started with FastAPI Here continue your roadmap in the development of web applications in Python with FastApi
Getting started with FastApi: Here continue your roadmap in the development of web applications in Python with FastApi
Azure AI Services at Scale for Cloud, Mobile, and Edge: Building Intelligent Apps with Azure Cognitive Services and Machine Learning
Building Serverless Applications with Google Cloud Run A Real-World Guide to Building Production-Ready Services
Generative AI in Banking Financial Services and Insurance A Guide to Use Cases, Approaches and Insights
Ultimate Generative AI Solutions on Google Cloud Practical Strategies for Building and Scaling Generative AI Solutions with Google Cloud Tools, Langchain, RAG, and LLMOps
Building Intelligent Apps with .Net and Azure AI Services Start Your Journey in Building Intelligent Solutions
Building Intelligent Apps with .Net and Azure AI Services Start Your Journey in Building Intelligent Solutions
Building Data Science Applications with FastAPI: Develop, manage, and deploy efficient machine learning applications with Python
Building Generative AI-Powered Apps A Hands-on Guide for Developers
Building Generative AI-Powered Apps: A Hands-on Guide for Developers
Building Generative AI-Powered Apps A Hands-on Guide for Developers
Building Reliable Services on the Cloud
LLM Adoption in the Enterprise A Guide to Building Meaningful Products with Generative AI
LLM Adoption in the Enterprise A Guide to Building Meaningful Products with Generative AI
Generative AI on AWS Building Context-Aware Multimodal Reasoning Applications
Generative AI on AWS Building Context-Aware Multimodal Reasoning Applications
RESTful Rails Development Building Open Applications and Services
Designing for Sustainability A Guide to Building Greener Digital Products and Services
Distributed Systems with Node.js Building Enterprise-Ready Backend Services
Building Services Engineering Smart and Sustainable Design for Health and Wellbeing
Building Cross-Platform Apps using Titanium, Alloy, and Appcelerator Cloud Services
Cloud Native Go Building Reliable Services in Unreliable Environments, 2nd Edition (Final Release)
Cloud Native Go Building Reliable Services in Unreliable Environments, 2nd Edition (Final Release)
Building a Future-Proof Cloud Infrastructure A Unified Architecture for Network, Security, and Storage Services
Cloud Native Go Building Reliable Services in Unreliable Environments, 2nd Edition (Second Early Release)
Building Microservices with ASP.NET Core Develop, Test, and Deploy Cross-Platform Services in the Cloud
Generative AI for Web Development Building Web Applications Powered by OpenAI APIs and Next.js
Generative AI for Web Development Building Web Applications Powered by OpenAI APIs and Next.js
Generative AI Apps with Langchain and Python A Project-Based Approach to Building Real-World LLM Apps
Mastering Serverless Applications with Google Cloud Run A Real-World Guide to Building Production-Ready Services (Early Release)
Generative Analysis: The Power of Generative AI for Object-Oriented Software Engineering with UML
Optimizing Generative AI Workloads for Sustainability Balancing Performance and Environmental Impact in Generative AI
Optimizing Generative AI Workloads for Sustainability Balancing Performance and Environmental Impact in Generative AI
Generative AI and LLMs Natural Language Processing and Generative Adversarial Networks
A Generative Journey to AI Mastering the foundations and frontiers of generative deep learning