BOOKS - Machine Learning and Metaheuristic Computation
Machine Learning and Metaheuristic Computation - Erik Cuevas, Jorge Galvez, Omar Avalos, Fernando Wario 2025 PDF | EPUB Wiley-IEEE Press BOOKS
1 TON

Views
86717

Telegram
 
Machine Learning and Metaheuristic Computation
Author: Erik Cuevas, Jorge Galvez, Omar Avalos, Fernando Wario
Year: 2025
Format: PDF | EPUB
File size: 30.3 MB
Language: ENG



Pay with Telegram STARS
The book "Machine Learning and Metaheuristic Computation" explores the intersection of machine learning and metaheuristics, providing readers with a comprehensive understanding of these two rapidly evolving fields and their applications in solving complex problems. The book covers topics such as neural networks, deep learning, genetic algorithms, simulated annealing, and ant colony optimization, among others, and demonstrates how these techniques can be used to solve real-world problems in areas like computer vision, natural language processing, and robotics. The author begins by introducing the fundamental concepts of machine learning and metaheuristics, explaining how they have been used in various industries and domains to improve decision-making processes and optimize outcomes. They then delve into more advanced topics, such as the use of machine learning in image recognition, natural language processing, and predictive modeling, highlighting the challenges and opportunities that come with these technologies. Throughout the book, the author emphasizes the importance of understanding the process of technology evolution and its impact on society, arguing that this knowledge is essential for developing a personal paradigm for perceiving the technological process of developing modern knowledge.
Книга «Машинное обучение и метаэвристические вычисления» исследует пересечение машинного обучения и метаэвристики, предоставляя читателям всестороннее понимание этих двух быстро развивающихся областей и их приложений при решении сложных задач. Книга охватывает такие темы, как нейронные сети, глубокое обучение, генетические алгоритмы, имитация отжига и оптимизация муравьиной колонии, среди прочих, и демонстрирует, как эти методы могут быть использованы для решения реальных проблем в таких областях, как компьютерное зрение, обработка естественного языка и робототехника. Автор начинает с введения фундаментальных концепций машинного обучения и метаэвристики, объясняя, как они использовались в различных отраслях и областях для улучшения процессов принятия решений и оптимизации результатов. Затем они углубляются в более продвинутые темы, такие как использование машинного обучения в распознавании изображений, обработке естественного языка и прогнозном моделировании, подчеркивая проблемы и возможности, которые приходят с этими технологиями. На протяжении всей книги автор подчёркивает важность понимания процесса эволюции технологий и его влияния на общество, утверждая, что это знание необходимо для выработки личностной парадигмы восприятия технологического процесса развития современных знаний.
''

You may also be interested in:

Machine Learning and Metaheuristic Computation
Machine Learning and Metaheuristic Computation
Machine Learning for Data Streams with Practical Examples in MOA (Adaptive Computation and Machine Learning series)
Introduction to Machine Learning (Adaptive Computation and Machine Learning), 4th Edition
Probabilistic Machine Learning: An Introduction (Adaptive Computation and Machine Learning series)
Learning Kernel Classifiers: Theory and Algorithms (Adaptive Computation and Machine Learning)
Advanced Machine Learning with Evolutionary and Metaheuristic Techniques
Advanced Machine Learning with Evolutionary and Metaheuristic Techniques
Elements of Causal Inference: Foundations and Learning Algorithms (Adaptive Computation and Machine Learning series)
Distributional Reinforcement Learning (Adaptive Computation and Machine Learning)
Metaheuristic and Machine Learning Optimization Strategies for Complex Systems
Metaheuristic and Machine Learning Optimization Strategies for Complex Systems
Advanced Machine Learning with Evolutionary and Metaheuristic Techniques (Computational Intelligence Methods and Applications)
Probabilistic Numerics: Computation as Machine Learning
Knowledge Graphs Fundamentals, Techniques, and Applications (Adaptive Computation and Machine Learning series)
Handbook of Evolutionary Machine Learning (Genetic and Evolutionary Computation)
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Machine Learning for Beginners A Complete and Phased Beginner’s Guide to Learning and Understanding Machine Learning and Artificial Intelligence Algoritms
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Debugging Machine Learning Models with Python: Develop high-performance, low-bias, and explainable machine learning and deep learning models
Machine Learning for Beginners An Introductory Guide to Learn and Understand Artificial Intelligence, Neural Networks and Machine Learning
Building Machine Learning Systems Using Python Practice to Train Predictive Models and Analyze Machine Learning Results
Machine Learning in Production: Master the art of delivering robust Machine Learning solutions with MLOps (English Edition)
Machine Learning for Business The Ultimate Artificial Intelligence & Machine Learning for Managers, Team Leaders and Entrepreneurs
Serverless Machine Learning with Amazon Redshift ML: Create, train, and deploy machine learning models using familiar SQL commands
Applied Machine Learning and High-Performance Computing on AWS: Accelerate the development of machine learning applications following architectural best practices
Machine Learning Master Machine Learning Fundamentals for Beginners, Business Leaders and Aspiring Data Scientists
Online Machine Learning: A Practical Guide with Examples in Python (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning The Ultimate Guide to Understand AI Big Data Analytics and the Machine Learning’s Building Block Application in Modern Life
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning for Beginners Build and deploy Machine Learning systems using Python, 2nd Edition
Robust Machine Learning: Distributed Methods for Safe AI (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning: A Guide to PyTorch, TensorFlow, and Scikit-Learn: Mastering Machine Learning With Python
Machine Learning with Core ML 2 and Swift A beginner-friendly guide to integrating machine learning into your apps
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Computer Programming This Book Includes Machine Learning for Beginners, Machine Learning with Python, Deep Learning with Python, Python for Data Analysis
Programming With Python 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow
Machine Learning for Finance Master Financial Strategies with Python-Powered Machine Learning