BOOKS - Advanced Machine Learning with Evolutionary and Metaheuristic Techniques
Advanced Machine Learning with Evolutionary and Metaheuristic Techniques - Jayaraman Valadi, Krishna Pratap Singh, Muneendra Ojha 2024 PDF | EPUB Springer BOOKS
1 TON

Views
52419

Telegram
 
Advanced Machine Learning with Evolutionary and Metaheuristic Techniques
Author: Jayaraman Valadi, Krishna Pratap Singh, Muneendra Ojha
Year: 2024
Format: PDF | EPUB
File size: 50.0 MB
Language: ENG



Pay with Telegram STARS
Book Description: Advanced Machine Learning with Evolutionary and Metaheuristic Techniques provides a comprehensive overview of the latest developments in machine learning techniques that leverage the power of evolutionary and metaheuristic algorithms to solve complex problems in various domains. The book covers the fundamental concepts of machine learning, evolutionary algorithms, and metaheuristics, and their applications in various fields such as computer vision, natural language processing, robotics, and bioinformatics. It also discusses the challenges and limitations of these techniques and outlines future research directions in this exciting field. The book is divided into four parts: Part I explores the basics of machine learning, including supervised and unsupervised learning, deep learning, and reinforcement learning. Part II delves into the application of evolutionary algorithms in machine learning, covering topics such as genetic programming, evolution strategies, and genetic algorithms. Part III focuses on the use of metaheuristics in machine learning, including simulated annealing, particle swarm optimization, and ant colony optimization. Finally, Part IV discusses the challenges and limitations of these techniques and outlines future research directions in this field. Throughout the book, the authors provide practical examples and case studies to illustrate the applications of these techniques in real-world scenarios. They also include exercises and projects to help readers gain hands-on experience with the concepts presented.
Advanced Machine arning with Evolutionary and Metaheuristic Techniques предоставляет всесторонний обзор последних разработок в области методов машинного обучения, которые используют возможности эволюционных и метаэвристических алгоритмов для решения сложных задач в различных областях. Книга охватывает фундаментальные концепции машинного обучения, эволюционных алгоритмов и метаэвристики, а также их применения в различных областях, таких как компьютерное зрение, обработка естественного языка, робототехника и биоинформатика. В нем также обсуждаются проблемы и ограничения этих методов и излагаются будущие направления исследований в этой захватывающей области. Книга разделена на четыре части: в части I рассматриваются основы машинного обучения, включая обучение с учителем и без учителя, глубокое обучение и обучение с подкреплением. Часть II углубляется в применение эволюционных алгоритмов в машинном обучении, охватывая такие темы, как генетическое программирование, стратегии эволюции и генетические алгоритмы. Часть III посвящена использованию метаэвристики в машинном обучении, включая имитацию отжига, оптимизацию роя частиц и оптимизацию муравьиной колонии. Наконец, в части IV обсуждаются проблемы и ограничения этих методов и излагаются будущие направления исследований в этой области. На протяжении всей книги авторы приводят практические примеры и тематические исследования, чтобы проиллюстрировать применение этих методов в реальных сценариях. Они также включают в себя упражнения и проекты, которые помогут читателям получить практический опыт работы с представленными концепциями.
''

You may also be interested in:

Advanced Machine Learning with Evolutionary and Metaheuristic Techniques
Advanced Machine Learning with Evolutionary and Metaheuristic Techniques
Advanced Machine Learning with Evolutionary and Metaheuristic Techniques (Computational Intelligence Methods and Applications)
Handbook of Evolutionary Machine Learning (Genetic and Evolutionary Computation)
Handbook of Evolutionary Machine Learning
Handbook of Evolutionary Machine Learning
Image Processing and Machine Learning, Volume 2 Advanced Topics in Image Analysis and Machine Learning
Machine Learning with Python Advanced and Effective Strategies Using Machine Learning with Python Theories
Machine Learning: Fundamental Algorithms for Supervised and Unsupervised Learning With Real-World Applications (Advanced Data Analytics Book 1)
Machine Learning with Python Advanced Guide in Machine Learning with Python
Machine Learning with Python 3 in 1 Beginners Guide + Step by Step Methods + Advanced Methods and Strategies to Learn Machine Learning with Python
Deep Learning and AI Superhero Mastering TensorFlow, Keras, and PyTorch Advanced Machine Learning and AI, Neural Networks, and Real-World Projects (Mastering the AI Revolution)
Probabilistic Machine Learning Advanced Topics
Machine Learning for Advanced Functional Materials
Advanced Techniques in Optimization for Machine Learning and Imaging
Advanced Techniques in Optimization for Machine Learning and Imaging
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
AI Advanced Machine Learning for Finance A Comprehensive Guide with Python
AI Advanced Machine Learning for Finance: A Comprehensive Guide with Python
AI Advanced Machine Learning for Finance A Comprehensive Guide with Python
Machine Learning for Beginners A Complete and Phased Beginner’s Guide to Learning and Understanding Machine Learning and Artificial Intelligence Algoritms
No-Code Data Science Mastering Advanced Analytics, Machine Learning, and Artificial Intelligence
No-Code Data Science Mastering Advanced Analytics, Machine Learning, and Artificial Intelligence
Energy Efficiency and Robustness of Advanced Machine Learning Architectures A Cross-Layer Approach
Energy Efficiency and Robustness of Advanced Machine Learning Architectures A Cross-Layer Approach
Advanced Computer Science Applications Recent Trends in AI, Machine Learning, and Network Security
Algorithmic Trading Methods Applications using Advanced Statistics, Optimization, and Machine Learning Techniques, Second Edition
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Debugging Machine Learning Models with Python: Develop high-performance, low-bias, and explainable machine learning and deep learning models
Evolutionary Multi-Task Optimization: Foundations and Methodologies (Machine Learning: Foundations, Methodologies, and Applications)
Fusion of Artificial Intelligence and Machine Learning for Advanced Image Processing, Data Analysis, and Cyber Security
Fusion of Artificial Intelligence and Machine Learning for Advanced Image Processing, Data Analysis, and Cyber Security
Feature Engineering for Modern Machine Learning with Scikit-Learn Advanced Data Science and Practical Applications
Building Machine Learning Systems Using Python Practice to Train Predictive Models and Analyze Machine Learning Results
Machine Learning in Production: Master the art of delivering robust Machine Learning solutions with MLOps (English Edition)
Machine Learning for Business The Ultimate Artificial Intelligence & Machine Learning for Managers, Team Leaders and Entrepreneurs
Machine Learning for Beginners An Introductory Guide to Learn and Understand Artificial Intelligence, Neural Networks and Machine Learning
Applied Machine Learning and High-Performance Computing on AWS: Accelerate the development of machine learning applications following architectural best practices
Serverless Machine Learning with Amazon Redshift ML: Create, train, and deploy machine learning models using familiar SQL commands
Machine Learning for Data Streams with Practical Examples in MOA (Adaptive Computation and Machine Learning series)