BOOKS - Statistical Machine Learning for Engineering with Applications
Statistical Machine Learning for Engineering with Applications - Jurgen Franke, Anita Schobel 2024 PDF Springer BOOKS
1 TON

Views
2033

Telegram
 
Statistical Machine Learning for Engineering with Applications
Author: Jurgen Franke, Anita Schobel
Year: 2024
Format: PDF
File size: 17.9 MB
Language: ENG



Pay with Telegram STARS
Book Description: Statistical Machine Learning for Engineering with Applications provides a comprehensive introduction to statistical machine learning methods and their applications in engineering. The book covers the fundamental concepts and techniques of statistical machine learning, including probability theory, statistical inference, and machine learning algorithms. It also discusses advanced topics such as deep learning, transfer learning, and reinforcement learning. The book includes practical examples and case studies to illustrate the application of statistical machine learning in various fields of engineering, including computer vision, natural language processing, and robotics. The book is divided into four parts: Part I provides an overview of statistical machine learning, including the basics of probability theory and statistical inference. Part II covers the fundamental machine learning algorithms, including linear regression, logistic regression, decision trees, and support vector machines. Part III explores advanced machine learning topics, such as deep learning, transfer learning, and reinforcement learning. Part IV discusses the applications of statistical machine learning in various fields of engineering, including computer vision, natural language processing, and robotics. Throughout the book, the authors emphasize the importance of understanding the underlying principles of statistical machine learning and provide numerous examples and exercises to help readers develop a deeper understanding of the subject. The book is suitable for students, researchers, and practitioners who want to learn about the applications of statistical machine learning in engineering.
Статистическое машинное обучение для проектирования с приложениями обеспечивает всестороннее введение в статистические методы машинного обучения и их приложения в проектировании. Книга охватывает фундаментальные концепции и методы статистического машинного обучения, включая теорию вероятностей, статистический вывод и алгоритмы машинного обучения. В нем также обсуждаются такие передовые темы, как глубокое обучение, обучение с переносом и обучение с подкреплением. Книга включает практические примеры и тематические исследования, иллюстрирующие применение статистического машинного обучения в различных областях инженерии, включая компьютерное зрение, обработку естественного языка и робототехнику. Книга разделена на четыре части: в части I представлен обзор статистического машинного обучения, включая основы теории вероятностей и статистического вывода. Часть II охватывает фундаментальные алгоритмы машинного обучения, включая линейную регрессию, логистическую регрессию, деревья решений и машины опорных векторов. В части III рассматриваются передовые темы машинного обучения, такие как глубокое обучение, обучение с переносом и обучение с подкреплением. В части IV обсуждаются применения статистического машинного обучения в различных областях инженерии, включая компьютерное зрение, обработку естественного языка и робототехнику. На протяжении всей книги авторы подчеркивают важность понимания основополагающих принципов статистического машинного обучения и приводят многочисленные примеры и упражнения, чтобы помочь читателям развить более глубокое понимание предмета. Книга подходит для студентов, исследователей и практиков, которые хотят узнать о приложениях статистического машинного обучения в технике.
''

You may also be interested in:

Statistical Machine Learning for Engineering with Applications
Statistical Machine Learning for Engineering with Applications
Statistics for Machine Learning Implement Statistical methods used in Machine Learning using Python
Statistical Machine Learning A Unified Framework (Chapman & Hall/CRC Texts in Statistical Science)
Machine Learning Production Systems Engineering Machine Learning Models and Pipelines
Statistical Reinforcement Learning Modern Machine Learning Approaches
Statistical Prediction and Machine Learning
Statistical Prediction and Machine Learning
Statistical Machine Learning: A Unified Framework
Molecular Networking: Statistical Mechanics in the Age of AI and Machine Learning
Molecular Networking Statistical Mechanics in the Age of AI and Machine Learning
Molecular Networking Statistical Mechanics in the Age of AI and Machine Learning
Introduction to Statistical and Machine Learning Methods for Data Science
Intelligent Prognostics for Engineering Systems with Machine Learning Techniques (Advanced Research in Reliability and System Assurance Engineering)
Data-Driven Computational Neuroscience Machine Learning and Statistical Models
Statistical Methods for Machine Learning Discover how to Transform Data into Knowledge with Python
Machine Learning and Computational Intelligence Techniques for Data Engineering: Proceedings of the 4th International Conference MISP 2022, Volume 2 (Lecture Notes in Electrical Engineering Book 998)
Machine Learning Engineering in Action
Machine Learning Engineering (MEAP)
Machine Learning and Optimization for Engineering Design (Engineering Optimization: Methods and Applications)
Machine Learning and Deep Learning in Computational Toxicology (Computational Methods in Engineering and the Sciences)
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Machine Learning for Beginners A Complete and Phased Beginner’s Guide to Learning and Understanding Machine Learning and Artificial Intelligence Algoritms
Machine Learning and Optimization for Engineering Design
Machine Learning and Optimization for Engineering Design
Machine Learning Engineering (Final Version)
Machine Learning Engineering in Action (MEAP Version 4)
Feature Engineering for Machine Learning and Data Analytics
Statistical and Machine-Learning Data Mining Techniques for Better Predictive Modeling and Analysis of Big Data, Third Edition
Data Science and Machine Learning Applications in Subsurface Engineering
Intelligent Prognostics for Engineering Systems with Machine Learning Techniques
Data Science and Machine Learning Applications in Subsurface Engineering
Data Science and Machine Learning Applications in Subsurface Engineering
Information-Driven Machine Learning Data Science as an Engineering Discipline
Information-Driven Machine Learning Data Science as an Engineering Discipline
Feature Engineering for Machine Learning Principles and Techniques for Data Scientists
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control
Data-Driven Science and Engineering Machine Learning, Dynamical Systems, and Control
Artificial Intelligence and Machine Learning Applications in Civil, Mechanical, and Industrial Engineering