BOOKS - Machine Learning for Radio Resource Management and Optimization in 5G and Bey...
Machine Learning for Radio Resource Management and Optimization in 5G and Beyond - Mariyam Ouaissa, Mariya Ouaissa, Hanane Lamaazi, Khadija Slimani, Ihtiram Raza Khan, B. Sundaravadivazhagan 2025 PDF | EPUB CRC Press BOOKS
1 TON

Views
60388

Telegram
 
Machine Learning for Radio Resource Management and Optimization in 5G and Beyond
Author: Mariyam Ouaissa, Mariya Ouaissa, Hanane Lamaazi, Khadija Slimani, Ihtiram Raza Khan, B. Sundaravadivazhagan
Year: 2025
Format: PDF | EPUB
File size: 12.3 MB
Language: ENG



Pay with Telegram STARS
The book "Machine Learning for Radio Resource Management and Optimization in 5G and Beyond" provides a comprehensive overview of the current state of machine learning techniques and their applications in radio resource management and optimization in 5G and beyond networks. The book covers the fundamental concepts of machine learning and their relevance to radio resource management, including supervised and unsupervised learning, deep learning, neural networks, and reinforcement learning. It also discusses the challenges and limitations of these techniques and how they can be applied to optimize radio resources in 5G and beyond networks. The book begins by exploring the concept of machine learning and its importance in the field of radio resource management. It highlights the need for a personal paradigm for perceiving the technological process of developing modern knowledge as the basis for the survival of humanity and the survival of the unification of people in a warring state. The author emphasizes the need to study and understand the process of technology evolution and its impact on society, as well as the potential consequences of not adapting to new technologies. The book then delves into the various machine learning techniques that are relevant to radio resource management, including supervised and unsupervised learning, deep learning, neural networks, and reinforcement learning. Each chapter provides a detailed explanation of the underlying principles and algorithms, along with practical examples and case studies to illustrate their applications in radio resource management.
В книге «Машинное обучение для управления и оптимизации радиоресурсов в 5G и за его пределами» представлен всесторонний обзор современного состояния технологий машинного обучения и их применения в управлении и оптимизации радиоресурсов в сетях 5G и за их пределами. Книга охватывает фундаментальные концепции машинного обучения и их отношение к управлению радиоресурсами, включая обучение с учителем и без учителя, глубокое обучение, нейронные сети и обучение с подкреплением. В нем также обсуждаются проблемы и ограничения этих методов и способы их применения для оптимизации радиоресурсов в сетях 5G и за их пределами. Книга начинается с изучения концепции машинного обучения и его важности в области управления радиоресурсами. В нем подчеркивается необходимость личностной парадигмы восприятия технологического процесса развития современного знания как основы выживания человечества и выживания объединения людей в воюющем государстве. Автор подчеркивает необходимость изучения и понимания процесса эволюции технологий и его влияния на общество, а также потенциальные последствия неадаптации к новым технологиям. Затем книга углубляется в различные методы машинного обучения, которые имеют отношение к управлению радиоресурсами, включая контролируемое и неконтролируемое обучение, глубокое обучение, нейронные сети и обучение с подкреплением. В каждой главе содержится подробное объяснение основных принципов и алгоритмов, а также практические примеры и тематические исследования, иллюстрирующие их применение в управлении радиоресурсами.
''

You may also be interested in:

Machine Learning for Radio Resource Management and Optimization in 5G and Beyond
Machine Learning Applications in Subsurface Energy Resource Management: State of the Art and Future Prognosis
Human Resource Management Essentials You Always Wanted To Know (Self-Learning Management Series)
Machine Learning under Resource Constraints : Volume 2
Integrated Water Resource Management in the Kurdistan Region (Water Resource Planning, Development and Management)
Cultural Resource Laws and Practice (Heritage Resource Management Series)
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Machine Learning for Financial Risk Management with Python
Machine Learning for Beginners A Complete and Phased Beginner’s Guide to Learning and Understanding Machine Learning and Artificial Intelligence Algoritms
Data Analytics and Machine Learning for Integrated Corridor Management
Machine Learning for Asset Management New Developments and Financial Applications
Data Analytics and Machine Learning for Integrated Corridor Management
Machine Learning for Financial Risk Management with Python (Early Release)
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Radio Spectrum Management Management of the spectrum and regulation of radio services, 2nd Edition
Human Resource Management in Schools and Colleges (Centre for Educational Leadership and Management)
The Science and Management of Uncertainty Dealing with Doubt in Natural Resource Management
Debugging Machine Learning Models with Python: Develop high-performance, low-bias, and explainable machine learning and deep learning models
Building Machine Learning Systems Using Python Practice to Train Predictive Models and Analyze Machine Learning Results
Machine Learning in Production: Master the art of delivering robust Machine Learning solutions with MLOps (English Edition)
Machine Learning for Beginners An Introductory Guide to Learn and Understand Artificial Intelligence, Neural Networks and Machine Learning
Machine Learning for Business The Ultimate Artificial Intelligence & Machine Learning for Managers, Team Leaders and Entrepreneurs
Serverless Machine Learning with Amazon Redshift ML: Create, train, and deploy machine learning models using familiar SQL commands
Applied Machine Learning and High-Performance Computing on AWS: Accelerate the development of machine learning applications following architectural best practices
Machine Learning for Data Streams with Practical Examples in MOA (Adaptive Computation and Machine Learning series)
Machine Learning Master Machine Learning Fundamentals for Beginners, Business Leaders and Aspiring Data Scientists
Online Machine Learning: A Practical Guide with Examples in Python (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning The Ultimate Guide to Understand AI Big Data Analytics and the Machine Learning’s Building Block Application in Modern Life
Machine Learning for Beginners Build and deploy Machine Learning systems using Python, 2nd Edition
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning: A Guide to PyTorch, TensorFlow, and Scikit-Learn: Mastering Machine Learning With Python
Robust Machine Learning: Distributed Methods for Safe AI (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning with Core ML 2 and Swift A beginner-friendly guide to integrating machine learning into your apps
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Computer Programming This Book Includes Machine Learning for Beginners, Machine Learning with Python, Deep Learning with Python, Python for Data Analysis
Programming With Python 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow
Machine Learning for Finance Master Financial Strategies with Python-Powered Machine Learning
Pragmatic Machine Learning with Python Learn How to Deploy Machine Learning Models in Production