BOOKS - Data Analytics and Machine Learning for Integrated Corridor Management
Data Analytics and Machine Learning for Integrated Corridor Management - Yashaswi Karnati, Dhruv Mahajan, Tania Banerjee, Rahul Sengupta, Clay Packard, Ryan Casburn 2025 PDF | EPUB CRC Press BOOKS
1 TON

Views
70933

Telegram
 
Data Analytics and Machine Learning for Integrated Corridor Management
Author: Yashaswi Karnati, Dhruv Mahajan, Tania Banerjee, Rahul Sengupta, Clay Packard, Ryan Casburn
Year: 2025
Format: PDF | EPUB
File size: 33.4 MB
Language: ENG



Pay with Telegram STARS
The book "Data Analytics and Machine Learning for Integrated Corridor Management" explores the potential of data analytics and machine learning in integrated corridor management, highlighting the importance of these technologies in optimizing transportation infrastructure planning, design, operation, and maintenance. The book provides insights into how data analytics and machine learning can be applied to various transportation modes, including roads, railways, airports, seaports, and public transportation systems. It covers topics such as data-driven decision-making, predictive modeling, and intelligent transportation systems, and offers practical examples of successful applications of these technologies in different regions of the world. The book begins by discussing the evolution of technology and its impact on society, emphasizing the need for a personal paradigm shift in understanding the technological process of developing modern knowledge. This shift involves recognizing the interconnectedness of technology and society and the imperative of adapting to new technologies to ensure human survival and the unification of people in a warring state. The author argues that this shift is necessary to overcome the challenges posed by the rapid pace of technological change and the increasing complexity of modern life. The book then delves into the specifics of data analytics and machine learning, explaining their potential to transform integrated corridor management. It explores the use of data analytics in traffic flow prediction, route optimization, and traveler information systems, as well as the application of machine learning algorithms to improve traffic management and reduce congestion. The author highlights the importance of integrating data analytics and machine learning into existing transportation infrastructure and operations, emphasizing the need for a comprehensive approach to managing corridors that considers all modes of transportation.
Книга «Data Analytics and Machine arning for Integrated Corridor Management» исследует потенциал аналитики данных и машинного обучения в интегрированном управлении коридорами, подчеркивая важность этих технологий в оптимизации планирования, проектирования, эксплуатации и обслуживания транспортной инфраструктуры. Книга дает представление о том, как аналитика данных и машинное обучение могут быть применены к различным видам транспорта, включая автомобильные дороги, железные дороги, аэропорты, морские порты и системы общественного транспорта. Он охватывает такие темы, как принятие решений на основе данных, прогнозное моделирование и интеллектуальные транспортные системы, и предлагает практические примеры успешного применения этих технологий в разных регионах мира. Книга начинается с обсуждения эволюции технологий и их влияния на общество, подчёркивая необходимость личностной смены парадигмы в понимании технологического процесса развития современных знаний. Этот сдвиг предполагает признание взаимосвязанности технологий и общества и императива адаптации к новым технологиям для обеспечения выживания человека и объединения людей в воюющем государстве. Автор утверждает, что этот сдвиг необходим для преодоления проблем, связанных с быстрыми темпами технологических изменений и возрастающей сложностью современной жизни. Затем книга углубляется в особенности аналитики данных и машинного обучения, объясняя их потенциал для трансформации интегрированного управления коридорами. В нем исследуется использование аналитики данных в прогнозировании потоков трафика, оптимизации маршрутов и информационных системах путешественников, а также применение алгоритмов машинного обучения для улучшения управления трафиком и уменьшения заторов. Автор подчеркивает важность интеграции аналитики данных и машинного обучения в существующую транспортную инфраструктуру и операции, подчеркивая необходимость комплексного подхода к управлению коридорами, учитывающего все виды транспорта.
''

You may also be interested in:

Ultimate Java for Data Analytics and Machine Learning: Unlock Java|s Ecosystem for Data Analysis and Machine Learning Using WEKA, JavaML, JFreeChart, and Deeplearning4j (English Edition)
Ultimate Java for Data Analytics and Machine Learning Unlock Java|s Ecosystem for Data Analysis and Machine Learning Using WEKA, JavaML, JFreeChart, and Deeplearning4j
Ultimate Java for Data Analytics and Machine Learning Unlock Java|s Ecosystem for Data Analysis and Machine Learning Using WEKA, JavaML, JFreeChart, and Deeplearning4j
Big data A Guide to Big Data Trends, Artificial Intelligence, Machine Learning, Predictive Analytics, Internet of Things, Data Science, Data Analytics, Business Intelligence, and Data Mining
Machine Learning The Ultimate Guide to Understand AI Big Data Analytics and the Machine Learning’s Building Block Application in Modern Life
Machine Learning The Ultimate Guide to Understand Artificial Intelligence and Big Data Analytics. Learn the Building Block Algorithms and the Machine Learning’s Application in the Modern Life
Data Analytics and Machine Learning Navigating the Big Data Landscape
Data Analytics and Machine Learning Navigating the Big Data Landscape
Disease Prediction using Machine Learning, Deep Learning and Data Analytics
Disease Prediction using Machine Learning, Deep Learning and Data Analytics
Python Data Science The Ultimate Crash Course, Tips, and Tricks to Learn Data Analytics, Machine Learning, and Their Application
Machine Learning: Fundamental Algorithms for Supervised and Unsupervised Learning With Real-World Applications (Advanced Data Analytics Book 1)
Business Intelligence An Essential Beginner’s Guide to BI, Big Data, Artificial Intelligence, Cybersecurity, Machine Learning, Data Science, Data Analytics, Social Media and Internet Marketing
Data Analytics and Machine Learning: Navigating the Big Data Landscape (Studies in Big Data, 145)
Feature Engineering for Machine Learning and Data Analytics
Fundamentals of Data Analytics: With a View to Machine Learning
Data Analytics in Bioinformatics A Machine Learning Perspective
Financial Data Analytics with Machine Learning, Optimization and Statistics
Machine Learning Approach for Cloud Data Analytics in IoT
Financial Data Analytics with Machine Learning, Optimization and Statistics
Data Analytics and Machine Learning for Integrated Corridor Management
An Introduction to Optimization with Applications in Machine Learning and Data Analytics
IoT, Machine Learning and Data Analytics for Smart Healthcare
IoT, Machine Learning and Data Analytics for Smart Healthcare
IoT, Machine Learning and Data Analytics for Smart Healthcare
Data Analytics and Machine Learning for Integrated Corridor Management
Learn Data Analytics For Beginners Data Analyst, Deep Learning, Neural Network, Python Data Analytics
Python Data Science The Complete Guide to Data Analytics + Machine Learning + Big Data Science + Pandas Python. The Easy Way to Programming (Exercises Included)
Learn Python Programming A Beginners Crash Course on Python Language for Getting Started with Machine Learning, Data Science and Data Analytics (Artificial Intelligence Book 1)
No-Code Data Science Mastering Advanced Analytics, Machine Learning, and Artificial Intelligence
Architecting Data and Machine Learning Platforms: Enable Analytics and AI-Driven Innovation in the Cloud
No-Code Data Science Mastering Advanced Analytics, Machine Learning, and Artificial Intelligence
Machine Learning For Beginners A Math Free Introduction for Business and Individuals to Machine Learning, Big Data, Data Science, and Neural Networks
Data Science and Machine Learning Interview Questions Using R: Crack the Data Scientist and Machine Learning Engineers Interviews with Ease
Data Science and Machine Learning Interview Questions Using R Crack the Data Scientist and Machine Learning Engineers Interviews with Ease
Python for Data Science Master Data Analysis from Scratch, with Business Analytics Tools and Step-by-Step techniques for Beginners. The Future of Machine Learning & Applied Artificial Intelligence
Architecting Data and Machine Learning Platforms Enable Analytics and AI-Driven Innovation in the Cloud (Final)
Architecting Data and Machine Learning Platforms Enable Analytics and AI-Driven Innovation in the Cloud (Final)
Graph-Powered Analytics and Machine Learning with TigerGraph: Driving Business Outcomes with Connected Data