BOOKS - No-Code Data Science Mastering Advanced Analytics, Machine Learning, and Arti...
No-Code Data Science Mastering Advanced Analytics, Machine Learning, and Artificial Intelligence - David Patrishkoff, Robert E Hoyt October 16, 2023 EPUB Lulu.com BOOKS
3 TON

Views
72442

Telegram
 
No-Code Data Science Mastering Advanced Analytics, Machine Learning, and Artificial Intelligence
Author: David Patrishkoff, Robert E Hoyt
Year: October 16, 2023
Format: EPUB
File size: 30.5 MB
Language: ENG



Pay with Telegram STARS
Book Description: The world we live in today is constantly evolving due to advancements in technology. The rate at which new technologies emerge has made it increasingly difficult to keep up with the latest trends. As a result, there is a growing demand for professionals who can master advanced analytics, machine learning, and artificial intelligence to stay ahead of the curve. This book provides readers with a comprehensive guide to mastering these fields without having to write code. It covers topics such as data science, machine learning, and artificial intelligence, providing practical examples and case studies to help readers apply their knowledge in real-world scenarios. The book begins by exploring the evolution of technology and its impact on society, highlighting the need for individuals to develop a personal paradigm for understanding the technological process. It then delves into the fundamentals of data science, including data visualization, data mining, and statistical analysis. Readers will learn how to use tools like Python and R to analyze and interpret large datasets, as well as how to create predictive models that can be applied in various industries. Next, the book dives into machine learning, covering topics such as supervised and unsupervised learning, deep learning, and neural networks.
Мир, в котором мы живем сегодня, постоянно развивается благодаря достижениям в области технологий. Скорость, с которой появляются новые технологии, делает все труднее идти в ногу с последними тенденциями. В результате растет спрос на профессионалов, способных освоить продвинутую аналитику, машинное обучение и искусственный интеллект, чтобы оставаться на опережение. Эта книга предоставляет читателям исчерпывающее руководство по освоению этих полей без необходимости написания кода. Он охватывает такие темы, как наука о данных, машинное обучение и искусственный интеллект, предоставляя практические примеры и тематические исследования, чтобы помочь читателям применить свои знания в реальных сценариях. Книга начинается с изучения эволюции технологий и их влияния на общество, подчёркивая необходимость развития индивидуумами личной парадигмы понимания технологического процесса. Затем он углубляется в основы науки о данных, включая визуализацию данных, интеллектуальный анализ данных и статистический анализ. Читатели узнают, как использовать такие инструменты, как Python и R, для анализа и интерпретации больших наборов данных, а также как создавать прогностические модели, которые можно применять в различных отраслях. Затем книга погружается в машинное обучение, охватывая такие темы, как контролируемое и неконтролируемое обучение, глубокое обучение и нейронные сети.
Il mondo in cui viviamo oggi è in continua evoluzione grazie ai progressi tecnologici. La velocità con cui arrivano le nuove tecnologie rende sempre più difficile stare al passo con le ultime tendenze. Di conseguenza, cresce la domanda di professionisti in grado di imparare analisi avanzate, apprendimento automatico e intelligenza artificiale per rimanere in anticipo. Questo libro fornisce ai lettori una guida completa per imparare questi campi senza dover scrivere il codice. Tratta temi come la scienza dei dati, l'apprendimento automatico e l'intelligenza artificiale, fornendo esempi pratici e studi di caso per aiutare i lettori ad applicare le loro conoscenze in scenari reali. Il libro inizia esplorando l'evoluzione della tecnologia e il loro impatto sulla società, sottolineando la necessità per gli individui di sviluppare un paradigma personale di comprensione del processo tecnologico. Viene poi approfondito nella scienza dei dati, inclusa la visualizzazione dei dati, l'analisi intelligente dei dati e l'analisi statistica. I lettori scopriranno come utilizzare strumenti come Python e R per analizzare e interpretare grandi set di dati e come creare modelli predittivi che possono essere utilizzati in diversi settori. Poi il libro si immerge nell'apprendimento automatico, trattando temi come l'apprendimento controllato e incontrollato, l'apprendimento profondo e le reti neurali.
''

You may also be interested in:

No-Code Data Science Mastering Advanced Analytics, Machine Learning, and Artificial Intelligence
No-Code Data Science Mastering Advanced Analytics, Machine Learning, and Artificial Intelligence
Programming Skills for Data Science Start Writing Code to Wrangle, Analyze, and Visualize Data with R (Addison-Wesley Data & Analytics Series) 1st Edition - Fiunal
Advanced Data Science and Analytics with Python (Chapman and Hall CRC Data Mining and Knowledge Discovery Series)
Advanced Data Science and Analytics with Python (Chapman & Hall/CRC Data Mining and Knowledge Discovery Series)
Data Analytics and Python Programming 2 Bundle Manuscript Beginners Guide to Learn Data Analytics, Predictive Analytics and Data Science with Python Programming
Big data A Guide to Big Data Trends, Artificial Intelligence, Machine Learning, Predictive Analytics, Internet of Things, Data Science, Data Analytics, Business Intelligence, and Data Mining
Practical Data Science with Hadoop and Spark: Designing and Building Effective Analytics at Scale (Addison-Wesley Data and Analytics)
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Data Analytics Principles, Tools, and Practices A Complete Guide for Advanced Data Analytics Using the Latest Trends, Tools
Advanced Data Analytics with AWS: Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources (English Edition)
Python Data Science The Complete Guide to Data Analytics + Machine Learning + Big Data Science + Pandas Python. The Easy Way to Programming (Exercises Included)
Why Data Science Projects Fail: The Harsh Realities of Implementing AI and Analytics, without the Hype (Chapman and Hall CRC Data Science Series)
Data Analytics: Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Data Analytics Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Getting Started with DuckDB: A practical guide for accelerating your data science, data analytics, and data engineering workflows
Essential Data Analytics, Data Science, and AI A Practical Guide for a Data-Driven World
DATA SCIENCE WITH PYTHON Complete Guide To Understanding Data Analytics And Data Science With Python Programming
Taming The Big Data Tidal Wave Finding Opportunities in Huge Data Streams with Advanced Analytics
Marketing Data Science: Modeling Techniques in Predictive Analytics with R and Python (FT Press Analytics)
Qlik Sense: Advanced Data Visualization for Your Organization: Create smart data visualizations and predictive analytics solutions
It|s All Analytics, Part III: The Applications of AI, Analytics, and Data Science (It|s All Analytics, 3)
Data Science 2 Books in 1 Python Programming & Python for Data Science, The Ultimate Guide to Learn Machine Learning and Predictive Analytics from Scratch with Hands-On Projects
Data Analytics for Absolute Beginners: Make Decisions Using Every Variable: (Introduction to Data, Data Visualization, Business Intelligence and Machine … Science, Python and Statistics for Begi
Advanced Analytics and Learning on Temporal Data: 6th ECML PKDD Workshop, AALTD 2021, Bilbao, Spain, September 13, 2021, Revised Selected Papers (Lecture Notes in Computer Science Book 13114)
Analytics in a Big Data World The Essential Guide to Data Science and its Applications
Agile Data Science Building Data Analytics Applications with Hadoop
Agile Data Science 2.0 Building Full-Stack Data Analytics Applications with Spark
PYTHON DATA ANALYTICS: Mastering Python for Effective Data Analysis and Visualization (2024 Beginner Guide)
PYTHON FOR DATA ANALYTICS: Mastering Python for Comprehensive Data Analysis and Insights (2023 Guide for Beginners)
Data Science and Big Data Analytics in Smart Environments
Business Intelligence An Essential Beginner’s Guide to BI, Big Data, Artificial Intelligence, Cybersecurity, Machine Learning, Data Science, Data Analytics, Social Media and Internet Marketing
Data Science and Analytics with Python (Chapman and Hall CRC Data Mining and Knowledge Discovery Series)
Learn Data Analytics For Beginners Data Analyst, Deep Learning, Neural Network, Python Data Analytics
Python Data Science The Ultimate Crash Course, Tips, and Tricks to Learn Data Analytics, Machine Learning, and Their Application
Advanced Data Analytics for Power Systems
Data Science and Data Analytics Opportunities and Challenges
Practical Data Analytics for BFSI Leveraging Data Science for Driving Decisions in Banking, Financial Services, and Insurance Operations