BOOKS - The Mathematics of Machine Learning Lectures on Supervised Methods and Beyond
The Mathematics of Machine Learning Lectures on Supervised Methods and Beyond - Maria Han Veiga, Francois Gaston Ged 2024 PDF | EPUB De Gruyter BOOKS
1 TON

Views
16322

Telegram
 
The Mathematics of Machine Learning Lectures on Supervised Methods and Beyond
Author: Maria Han Veiga, Francois Gaston Ged
Year: 2024
Format: PDF | EPUB
File size: 29.0 MB
Language: ENG



Pay with Telegram STARS
The Mathematics of Machine Learning Lectures on Supervised Methods and Beyond Introduction The Mathematics of Machine Learning Lectures on Supervised Methods and Beyond is a comprehensive guide to understanding the mathematical foundations of machine learning, one of the most rapidly growing fields in computer science. This book provides a detailed overview of the principles and techniques of supervised learning methods, which are widely used in various applications such as image recognition, natural language processing, and predictive modeling. The author, a renowned expert in the field, presents the material in an engaging and accessible way, making it an ideal resource for both beginners and advanced learners. Chapter 1: Introduction to Machine Learning In this chapter, we explore the concept of machine learning and its importance in today's technology-driven world. We discuss the evolution of machine learning and how it has transformed into a powerful tool for solving complex problems in various industries. We also introduce the basic concepts of supervised learning and explain why it is essential to understand these principles before diving deeper into more advanced topics. Chapter 2: Linear Regression Linear regression is the foundation of all machine learning algorithms, and this chapter delves into the mathematical details of this method. We cover the basics of linear regression, including the cost function, gradient descent, and optimization techniques. We also discuss the limitations of linear regression and its applications in real-world scenarios.
The Mathematics of Machine arning ctures on Supervised Methods and Beyond Introduction The Mathematics of Machine arning ctures on Supervised Methods and Beyond - всеобъемлющее руководство по пониманию математических основ машинного обучения, одной из наиболее быстро растущих областей информатики. В этой книге представлен подробный обзор принципов и методов обучения с учителем, которые широко используются в различных приложениях, таких как распознавание изображений, обработка естественного языка и прогнозное моделирование. Автор, известный эксперт в этой области, представляет материал в увлекательной и доступной форме, что делает его идеальным ресурсом как для начинающих, так и для продвинутых учеников. Глава 1: Введение в машинное обучение В этой главе мы исследуем концепцию машинного обучения и ее важность в современном мире, основанном на технологиях. Мы обсуждаем эволюцию машинного обучения и то, как оно трансформировалось в мощный инструмент решения сложных задач в различных отраслях. Мы также представляем основные понятия обучения с учителем и объясняем, почему важно понимать эти принципы, прежде чем углубляться в более продвинутые темы. Глава 2: Линейная регрессия Линейная регрессия является основой всех алгоритмов машинного обучения, и эта глава углубляется в математические детали этого метода. Мы рассмотрим основы линейной регрессии, включая функцию стоимости, градиентный спуск и методы оптимизации. Мы также обсуждаем ограничения линейной регрессии и ее применения в реальных сценариях.
''

You may also be interested in:

The Mathematics of Machine Learning Lectures on Supervised Methods and Beyond
The Mathematics of Machine Learning Lectures on Supervised Methods and Beyond
The Mathematics of Machine Learning Lectures on Supervised Methods and Beyond
Federated Learning (Synthesis Lectures on Artificial Intelligence and Machine Learning)
Mathematics of Machine Learning
Mathematics for Machine Learning
Machine Learning Mathematics in Python
Machine Learning Mathematics in Python
Introduction to Logic Programming (Synthesis Lectures on Artificial Intelligence and Machine Learning)
Mathematics and Programming for Machine Learning with R From the Ground Up
Machine Learning An Applied Mathematics Introduction
Machine Learning in Pure Mathematics and Theoretical Physics
Mathematics for Machine Learning A Deep Dive into Algorithms
Practical Mathematics for AI and Deep Learning: A Concise yet In-Depth Guide on Fundamentals of Computer Vision, NLP, Complex Deep Neural Networks and Machine Learning (English Edition)
Essentials of Python for Artificial Intelligence and Machine Learning (Synthesis Lectures on Engineering, Science, and Technology)
Handbook of Financial Econometrics, Mathematics, Statistics, and Machine Learning
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Machine Learning for Beginners A Complete and Phased Beginner’s Guide to Learning and Understanding Machine Learning and Artificial Intelligence Algoritms
Before Machine Learning, Volume 2 - Calculus for A.I. The fundamental mathematics for Data Science and Artificial Intelligence
Before Machine Learning Volume 2 - Calculus for A.I: The fundamental mathematics for Data Science and Artificial Intelligence
Before Machine Learning, Volume 2 - Calculus for A.I. The fundamental mathematics for Data Science and Artificial Intelligence
Before Machine Learning Volume 1 - Linear Algebra for A.I. The fundamental mathematics for Data Science and Artificial Inteligence
Before Machine Learning Volume 1 - Linear Algebra for A.I: The fundamental mathematics for Data Science and Artificial Inteligence.
Before Machine Learning Volume 1 - Linear Algebra for A.I. The fundamental mathematics for Data Science and Artificial Inteligence
Discrete Mathematics: A Concise Introduction (Synthesis Lectures on Mathematics and Statistics)
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Debugging Machine Learning Models with Python: Develop high-performance, low-bias, and explainable machine learning and deep learning models
Building Machine Learning Systems Using Python Practice to Train Predictive Models and Analyze Machine Learning Results
Machine Learning in Production: Master the art of delivering robust Machine Learning solutions with MLOps (English Edition)
Machine Learning for Beginners An Introductory Guide to Learn and Understand Artificial Intelligence, Neural Networks and Machine Learning
Machine Learning for Business The Ultimate Artificial Intelligence & Machine Learning for Managers, Team Leaders and Entrepreneurs
Applied Machine Learning and High-Performance Computing on AWS: Accelerate the development of machine learning applications following architectural best practices
Serverless Machine Learning with Amazon Redshift ML: Create, train, and deploy machine learning models using familiar SQL commands
Machine Learning for Data Streams with Practical Examples in MOA (Adaptive Computation and Machine Learning series)
Online Machine Learning: A Practical Guide with Examples in Python (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning Master Machine Learning Fundamentals for Beginners, Business Leaders and Aspiring Data Scientists
Machine Learning The Ultimate Guide to Understand AI Big Data Analytics and the Machine Learning’s Building Block Application in Modern Life
Machine Learning for Beginners Build and deploy Machine Learning systems using Python, 2nd Edition
Machine Learning: A Guide to PyTorch, TensorFlow, and Scikit-Learn: Mastering Machine Learning With Python
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python