BOOKS - Modern Data Mining with Python A risk-managed approach to developing and depl...
Modern Data Mining with Python A risk-managed approach to developing and deploying explainable and efficient algorithms using ModelOps - Dushyant Singh Sengar, Vikash Chandra 2024 EPUB BPB Publications BOOKS
1 TON

Views
38795

Telegram
 
Modern Data Mining with Python A risk-managed approach to developing and deploying explainable and efficient algorithms using ModelOps
Author: Dushyant Singh Sengar, Vikash Chandra
Year: 2024
Format: EPUB
File size: 20.0 MB
Language: ENG



Pay with Telegram STARS
Book Description: In this book, we explore the concept of data mining and its applications in the field of machine learning. We will focus on the use of Python programming language to develop efficient and explainable algorithms that can be used in various industries such as finance, healthcare, marketing, and more. The book covers topics such as data preprocessing, feature selection, model selection, and model evaluation, as well as the importance of ModelOps in the development and deployment of these models. Additionally, we will discuss the risks associated with data mining and how to manage them effectively. The book is divided into four parts: Part I: Introduction to Data Mining, Part II: Data Preparation, Part III: Model Development, and Part IV: Model Deployment. Each part builds upon the previous one, providing a comprehensive understanding of the process of data mining and its applications.
В этой книге мы исследуем концепцию интеллектуального анализа данных и ее применения в области машинного обучения. Мы сосредоточимся на использовании языка программирования Python для разработки эффективных и объяснимых алгоритмов, которые можно использовать в различных отраслях, таких как финансы, здравоохранение, маркетинг и многое другое. Книга охватывает такие темы, как предварительная обработка данных, выбор функций, выбор модели и оценка модели, а также важность ModelOps в разработке и развертывании этих моделей. Кроме того, мы обсудим риски, связанные с интеллектуальным анализом данных, и способы их эффективного управления. Книга разделена на четыре части: Часть I: Введение в интеллектуальный анализ данных, Часть II: Подготовка данных, Часть III: Разработка модели и Часть IV: Развертывание модели. Каждая часть основывается на предыдущей, обеспечивая всестороннее понимание процесса интеллектуального анализа данных и его приложений.
''

You may also be interested in:

Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data (Princeton Series in Modern Observational Astronomy, 1)
Python Machine Learning Discover the Essentials of Machine Learning, Data Analysis, Data Science, Data Mining and Artificial Intelligence Using Python Code with Python Tricks
Modern Data Mining with Python A risk-managed approach to developing and deploying explainable and efficient algorithms using ModelOps
Modern Data Mining with Python A risk-managed approach to developing and deploying explainable and efficient algorithms using ModelOps
Modern Data Mining with Python: A risk-managed approach to developing and deploying explainable and efficient algorithms using ModelOps (English Edition)
Modern Data Architectures with Python: A practical guide to building and deploying data pipelines, data warehouses, and data lakes with Python
Data Science and Analytics with Python (Chapman and Hall CRC Data Mining and Knowledge Discovery Series)
Statistics, Data Mining and Machine Learning in Astronomy A Practical Python Guide for the Analysis of Survey Data, Updated Ed
Advanced Data Science and Analytics with Python (Chapman and Hall CRC Data Mining and Knowledge Discovery Series)
Advanced Data Science and Analytics with Python (Chapman & Hall/CRC Data Mining and Knowledge Discovery Series)
Data Mining and Exploration From Traditional Statistics to Modern Data Science
Web Data Mining with Python
Технологии анализа данных. Data Mining, Visual Mining, Text Mining, OLAP
Python Data Mining Quick Start Guide: A beginner|s guide to extracting valuable insights from your data
Data Mining with Python Theory, Application, and Case Studies
Data Mining with Python Theory, Application, and Case Studies
Data Mining for Business Analytics Concepts, Techniques and Applications in Python
Automate ChatGPT Prompts for Data Science with Python Enhanced Coding for the Modern Python Developer
Advances in Knowledge Discovery and Data Mining: 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2023, Osaka, Japan, May 25-28, … Notes in Computer Science Book 13936)
Data Analytics: Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Data Analytics Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Data Labeling in Machine Learning with Python: Explore modern ways to prepare labeled data for training and fine-tuning ML and generative AI models
Mining the Social Web Data Mining Facebook, Twitter, LinkedIn, Instagram, GitHub, and More, 3rd Edition
Big Data, Data Mining and Data Science Algorithms, Infrastructures, Management and Security
Coding with Python The Ultimate Guide For Data Science, a Smart Way to Program With Python, Understand Data Analytics and Deep Learning Faster Computer Programming for Beginners (Book Python 3)
Python Data Science The Bible. The Ultimate Beginner’s Guide to Learn Data Analysis, from the Basics and Essentials, to Advance Content! (Python Programming, Python Crash Course, Coding Made Easy Book
Python Data Science The Complete Guide to Data Analytics + Machine Learning + Big Data Science + Pandas Python. The Easy Way to Programming (Exercises Included)
Python for Data Analysis A Complete Crash Course on Python for Data Science to Learn Essential Tools and Python Libraries, NumPy, Pandas, Jupyter Notebook, Analysis and Visualization
Build Your Own Ethereum Mining Raspberry Pi Full Node [Python Client] Mining on Raspberry Pi
Python and R for the Modern Data Scientist (Early Release)
Modern Business Analytics Increasing the Value of Your Data with Python and R
Machine Learning with Python The Ultimate Guide to Learn Machine Learning Algorithms. Includes a Useful Section about Analysis, Data Mining and Artificial Intelligence in Business Applications
Python Data Analysis Transforming Raw Data into Actionable Intelligence with Python|s Data Analysis Capabilities
Python Data Analysis Transforming Raw Data into Actionable Intelligence with Python|s Data Analysis Capabilities
Deciphering Data Architectures Choosing Between a Modern Data Warehouse, Data Fabric, Data Lakehouse, and Data Mesh
Deciphering Data Architectures Choosing Between a Modern Data Warehouse, Data Fabric, Data Lakehouse, and Data Mesh
Big data A Guide to Big Data Trends, Artificial Intelligence, Machine Learning, Predictive Analytics, Internet of Things, Data Science, Data Analytics, Business Intelligence, and Data Mining
Graph Data Science with Python and Neo4j: Hands-on Projects on Python and Neo4j Integration for Data Visualization and Analysis Using Graph Data … Enterprise Strategies (English Edition)
Python for Excel A Modern Environment for Automation and Data Analysis
Data Warehouse and Data Mining Concepts, techniques and real life applications