BOOKS - OS AND DB - Data Mining Theories, Algorithms, and Examples
Data Mining Theories, Algorithms, and Examples - Nong Ye 2013 PDF CRC Press BOOKS OS AND DB
1 TON

Views
90008

Telegram
 
Data Mining Theories, Algorithms, and Examples
Author: Nong Ye
Year: 2013
Format: PDF
File size: 4 MB
Language: ENG



Pay with Telegram STARS
Book Description: The book "Data Mining Theories Algorithms and Examples" by Tan, Bang Pham, and Le Thi Thu provides a comprehensive overview of data mining techniques and their applications in various fields. The authors present a systematic approach to understanding the concepts and algorithms of data mining, making it accessible to readers who may not have a technical background in computer science or statistics. The book covers topics such as data preprocessing, data warehousing, OLAP, data mining functions, and advanced data mining techniques like neural networks and deep learning. It also includes examples and case studies to illustrate the practical applications of data mining in industries like finance, marketing, and healthcare. Long Detailed Description: In today's fast-paced technological world, it is essential to understand the process of technology evolution and its impact on humanity. The book "Data Mining Theories Algorithms and Examples" by Tan, Bang Pham, and Le Thi Thu offers a unique perspective on this topic by exploring the intersection of data mining and human survival. The authors argue that developing a personal paradigm for perceiving the technological process of modern knowledge is crucial for the survival of humanity and the unification of people in a warring state. This book provides a comprehensive guide to data mining theories, algorithms, and examples, making it an indispensable resource for anyone looking to gain a deeper understanding of the field. The book begins with an introduction to data mining, explaining the importance of this field and its relevance to various industries. The authors then delve into the fundamentals of data preprocessing, which is a critical step in the data mining process.
В книге Tan, Bang Pham и Thi Thu «Data Mining Theories Algorithms and Examples» представлен всесторонний обзор методов интеллектуального анализа данных и их применения в различных областях. Авторы представляют системный подход к пониманию концепций и алгоритмов интеллектуального анализа данных, делая его доступным для читателей, которые могут не иметь технического образования в информатике или статистике. Книга охватывает такие темы, как предварительная обработка данных, хранение данных, OLAP, функции интеллектуального анализа данных и передовые методы интеллектуального анализа данных, такие как нейронные сети и глубокое обучение. Он также включает примеры и тематические исследования, чтобы проиллюстрировать практическое применение интеллектуального анализа данных в таких отраслях, как финансы, маркетинг и здравоохранение. Подробное описание: В современном быстро развивающемся технологическом мире важно понимать процесс эволюции технологий и его влияние на человечество. Книга Tan, Bang Pham и Thi Thu «Data Mining Theories Algorithms and Examples» предлагает уникальный взгляд на эту тему, исследуя пересечение интеллектуального анализа данных и выживания человека. Авторы утверждают, что разработка личной парадигмы восприятия технологического процесса современного знания имеет решающее значение для выживания человечества и объединения людей в воюющем государстве. Эта книга содержит исчерпывающее руководство по теориям, алгоритмам и примерам интеллектуального анализа данных, что делает ее незаменимым ресурсом для тех, кто хочет получить более глубокое понимание этой области. Книга начинается с введения в интеллектуальный анализ данных, объясняющего важность этой области и ее актуальность для различных отраслей. Затем авторы углубляются в основы предварительной обработки данных, что является критическим шагом в процессе интеллектуального анализа данных.
Il libro di Tal, Bang Pham e Thi Thu «Data Mining Theories Algorithms and Examples» fornisce una panoramica completa delle tecniche di analisi intelligente dei dati e delle loro applicazioni in diversi ambiti. Gli autori presentano un approccio di sistema per comprendere i concetti e gli algoritmi di analisi intelligente dei dati, rendendoli accessibili ai lettori che potrebbero non avere formazione tecnica in informatica o statistica. Il libro comprende argomenti quali il pre-elaborazione, lo storage, OLAP, le funzioni di analisi intelligente dei dati e le best practice per l'analisi intelligente dei dati, quali le reti neurali e l'apprendimento approfondito. Include anche esempi e studi di caso per illustrare l'applicazione pratica dell'analisi intelligente dei dati in settori quali finanza, marketing e sanità. Descrizione dettagliata: In un mondo tecnologico in continua evoluzione, è importante comprendere l'evoluzione della tecnologia e il suo impatto sull'umanità. Il libro di Tang, Bang Pham e Thi Thu «Data Mining Theories Algorithms and Examples» offre una visione unica del tema, esplorando l'intersezione tra l'analisi intelligente dei dati e la sopravvivenza umana. Gli autori sostengono che sviluppare un paradigma personale della percezione del processo tecnologico della conoscenza moderna è fondamentale per la sopravvivenza dell'umanità e l'unione delle persone in uno stato in guerra. Questo libro fornisce una guida completa alle teorie, agli algoritmi e agli esempi di analisi intelligente dei dati, rendendola una risorsa indispensabile per coloro che desiderano una maggiore comprensione di questo campo. Il libro inizia con l'introduzione di dati intelligenti che spiegano l'importanza di questo campo e la sua rilevanza per diversi settori. Gli autori approfondiscono le basi dell'elaborazione preliminare dei dati, un passo cruciale nel processo di analisi intelligente dei dati.
Das Buch „Data Mining Theories Algorithms and Examples“ von Tan, Bang Pham und Thi Thu bietet einen umfassenden Überblick über Data Mining Methoden und deren Anwendung in verschiedenen Bereichen. Die Autoren präsentieren einen systematischen Ansatz zum Verständnis von Data-Mining-Konzepten und Algorithmen und machen ihn sern zugänglich, die möglicherweise keinen technischen Hintergrund in Informatik oder Statistik haben. Das Buch behandelt Themen wie Datenvorverarbeitung, Datenspeicherung, OLAP, Data-Mining-Funktionen und fortschrittliche Data-Mining-Techniken wie neuronale Netze und Deep arning. Es enthält auch Beispiele und Fallstudien, um die praktische Anwendung von Data Mining in Branchen wie Finanzen, Marketing und Gesundheitswesen zu veranschaulichen. Ausführliche Beschreibung: In der heutigen schnelllebigen technologischen Welt ist es wichtig, den Prozess der Technologieentwicklung und seine Auswirkungen auf die Menschheit zu verstehen. Das Buch von Tan, Bang Pham und Thi Thu „Data Mining Theories Algorithms and Examples“ bietet einen einzigartigen Einblick in dieses Thema und untersucht die Schnittstelle von Data Mining und menschlichem Überleben. Die Autoren argumentieren, dass die Entwicklung eines persönlichen Paradigmas der Wahrnehmung des technologischen Prozesses des modernen Wissens für das Überleben der Menschheit und die Vereinigung der Menschen in einem kriegführenden Staat von entscheidender Bedeutung ist. Dieses Buch bietet einen umfassenden itfaden zu Theorien, Algorithmen und Beispielen des Data Mining und ist damit eine unverzichtbare Ressource für diejenigen, die ein tieferes Verständnis dieses Bereichs erlangen möchten. Das Buch beginnt mit einer Einführung in Data Mining, die die Bedeutung dieses Bereichs und seine Relevanz für verschiedene Branchen erklärt. Die Autoren vertiefen sich dann in die Grundlagen der Datenvorverarbeitung, ein kritischer Schritt im Data Mining-Prozess.
''

You may also be interested in:

Data Mining Theories, Algorithms, and Examples
Data Analytics: Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Data Analytics Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Big Data, Data Mining and Data Science Algorithms, Infrastructures, Management and Security
Data Mining Algorithms Explained Using R
Introduction to Algorithms for Data Mining and Machine Learning
Data Mining Concepts, Models, Methods, and Algorithms, Third Edition
Graph Algorithms for Data Science: With examples in Neo4j
Graph Algorithms for Data Science With examples in Neo4j (Final Release)
Graph Algorithms for Data Science With examples in Neo4j (Final Release)
Технологии анализа данных. Data Mining, Visual Mining, Text Mining, OLAP
Machine Learning for Business How to Build Artificial Intelligence through Concepts of Statistics, Algorithms, Analysis, and Data Mining
Modern Data Mining with Python A risk-managed approach to developing and deploying explainable and efficient algorithms using ModelOps
Modern Data Mining with Python A risk-managed approach to developing and deploying explainable and efficient algorithms using ModelOps
Modern Data Mining with Python: A risk-managed approach to developing and deploying explainable and efficient algorithms using ModelOps (English Edition)
Advances in Knowledge Discovery and Data Mining: 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2023, Osaka, Japan, May 25-28, … Notes in Computer Science Book 13936)
Mining the Social Web Data Mining Facebook, Twitter, LinkedIn, Instagram, GitHub, and More, 3rd Edition
Machine Learning with Python The Ultimate Guide to Learn Machine Learning Algorithms. Includes a Useful Section about Analysis, Data Mining and Artificial Intelligence in Business Applications
Algorithms and Data Structures with Python: An interactive learning experience: Comprehensive introduction to data structures and algorithms (Spanish Edition)
Algorithms and Data Structures with Python An interactive learning experience Comprehensive introduction to data structures and algorithms
Algorithms and Data Structures with Python An interactive learning experience Comprehensive introduction to data structures and algorithms
Easy Learning Data Structures & Algorithms C# Graphically learn data structures and algorithms better than before
Easy Learning Data Structures & Algorithms Go Graphically learn data structures and algorithms better than before
Data Structures and Algorithms for Beginners Elevating Your Coding Skills with Data Structures and Algorithms
Data Structures and Algorithms for Beginners Elevating Your Coding Skills with Data Structures and Algorithms
Data Structures and Algorithms for Beginners: Elevating Your Coding Skills with Data Structures and Algorithms
Big data A Guide to Big Data Trends, Artificial Intelligence, Machine Learning, Predictive Analytics, Internet of Things, Data Science, Data Analytics, Business Intelligence, and Data Mining
Data Warehouse and Data Mining Concepts, techniques and real life applications
Data Warehouse and Data Mining Concepts, techniques and real life applications
Data Mining Approaches for Big Data and Sentiment Analysis in Social Media
Data Mining and Exploration From Traditional Statistics to Modern Data Science
Big Data, Data Mining, and Machine Learning Value Creation for Business Leaders and Practitioners
Data Warehouse and Data Mining: Concepts, techniques and real life applications (English Edition)
Handbook of Research on Big Data and the IoT (Advances in Data Mining and Database Management (ADMDM))
Data Fusion and Data Mining for Power System Monitoring
Data Mining and Data Warehousing Principles and Practical Techniques
Evolutionary Data Clustering: Algorithms and Applications (Algorithms for Intelligent Systems)
Data Science and Analytics with Python (Chapman and Hall CRC Data Mining and Knowledge Discovery Series)
Statistical and Machine-Learning Data Mining Techniques for Better Predictive Modeling and Analysis of Big Data, Third Edition
Absolute Beginner|s Guide to Algorithms: A Practical Introduction to Data Structures and Algorithms in JavaScript