BOOKS - Cracking the Machine Learning Code Technicality or Innovation?
Cracking the Machine Learning Code Technicality or Innovation? - KC Santosh, Rodrigue Rizk, Siddhi K. Bajracharya 2024 PDF | EPUB Springer BOOKS
1 TON

Views
11215

Telegram
 
Cracking the Machine Learning Code Technicality or Innovation?
Author: KC Santosh, Rodrigue Rizk, Siddhi K. Bajracharya
Year: 2024
Format: PDF | EPUB
File size: 35.1 MB
Language: ENG



Pay with Telegram STARS
Book Description: Cracking the Machine Learning Code Technicality or Innovation is a thought-provoking book that delves into the intricacies of machine learning and its impact on society. The author argues that understanding the technicalities of machine learning is essential for both technological advancement and societal progress. The book explores the intersection of technology and innovation, highlighting the importance of balancing technical expertise with creative thinking to drive meaningful change. It challenges readers to question their assumptions about the role of machines in society and encourages them to embrace a more nuanced view of technology's potential. The book begins by examining the historical context of machine learning, tracing its evolution from simple algorithms to complex neural networks. It then delves into the inner workings of these systems, explaining how they learn and improve over time. The author emphasizes the need for a deep understanding of the underlying principles to harness the full potential of machine learning. As the book progresses, it becomes clear that the author's ultimate goal is to inspire a new approach to technological development, one that prioritizes human values and ethics alongside technical prowess.
Cracking the Machine arning Code Technicality or Innovation - книга, заставляющая задуматься о тонкостях машинного обучения и его влиянии на общество. Автор утверждает, что понимание технических особенностей машинного обучения имеет важное значение как для технического прогресса, так и для общественного прогресса. Книга исследует пересечение технологий и инноваций, подчеркивая важность баланса технического опыта с творческим мышлением, чтобы стимулировать значимые изменения. Он заставляет читателей усомниться в своих предположениях о роли машин в обществе и призывает их принять более детальное представление о потенциале технологий. Книга начинается с изучения исторического контекста машинного обучения, прослеживая его эволюцию от простых алгоритмов к сложным нейронным сетям. Затем он углубляется во внутреннюю работу этих систем, объясняя, как они учатся и улучшаются с течением времени. Автор подчеркивает необходимость глубокого понимания основополагающих принципов для использования всего потенциала машинного обучения. По мере развития книги становится ясно, что конечная цель автора - вдохновить новый подход к технологическому развитию, который отдает приоритет человеческим ценностям и этике наряду с техническим мастерством.
''

You may also be interested in:

Cracking the Machine Learning Code Technicality or Innovation?
Cracking the Machine Learning Code Technicality or Innovation?
Cracking the Machine Learning Code Technicality or Innovation?
Cracking the Machine Learning Code
Cracking The Machine Learning Interview 225 Machine Learning Interview Questions with Solutions
Python Machine Learning Discover the Essentials of Machine Learning, Data Analysis, Data Science, Data Mining and Artificial Intelligence Using Python Code with Python Tricks
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Machine Learning for Beginners A Complete and Phased Beginner’s Guide to Learning and Understanding Machine Learning and Artificial Intelligence Algoritms
No-Code AI Concepts and Applications in Machine Learning, Visualization, and Cloud Platforms
Low-Code AI: A Practical Project-Driven Introduction to Machine Learning
No-Code AI Concepts and Applications in Machine Learning, Visualization, and Cloud Platforms
Low-Code AI A Practical Project-Driven Introduction to Machine Learning (Final)
Low-Code AI A Practical Project-Driven Introduction to Machine Learning (Final)
No-Code Data Science Mastering Advanced Analytics, Machine Learning, and Artificial Intelligence
Machine Learning Pocket Reference Working with Structured Data in Python (First Edition) +code
A Primer to the 42 Most commonly used Machine Learning Algorithms (With Code Samples). (Artificial Intelligence Book 1)
No-Code Data Science Mastering Advanced Analytics, Machine Learning, and Artificial Intelligence
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Debugging Machine Learning Models with Python: Develop high-performance, low-bias, and explainable machine learning and deep learning models
Machine Learning for Business The Ultimate Artificial Intelligence & Machine Learning for Managers, Team Leaders and Entrepreneurs
Machine Learning in Production: Master the art of delivering robust Machine Learning solutions with MLOps (English Edition)
Machine Learning for Beginners An Introductory Guide to Learn and Understand Artificial Intelligence, Neural Networks and Machine Learning
Building Machine Learning Systems Using Python Practice to Train Predictive Models and Analyze Machine Learning Results
Serverless Machine Learning with Amazon Redshift ML: Create, train, and deploy machine learning models using familiar SQL commands
Applied Machine Learning and High-Performance Computing on AWS: Accelerate the development of machine learning applications following architectural best practices
Machine Learning for Data Streams with Practical Examples in MOA (Adaptive Computation and Machine Learning series)
Online Machine Learning: A Practical Guide with Examples in Python (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning Master Machine Learning Fundamentals for Beginners, Business Leaders and Aspiring Data Scientists
Machine Learning The Ultimate Guide to Understand AI Big Data Analytics and the Machine Learning’s Building Block Application in Modern Life
Machine Learning for Beginners Build and deploy Machine Learning systems using Python, 2nd Edition
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Robust Machine Learning: Distributed Methods for Safe AI (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning with Core ML 2 and Swift A beginner-friendly guide to integrating machine learning into your apps
Machine Learning: A Guide to PyTorch, TensorFlow, and Scikit-Learn: Mastering Machine Learning With Python
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Computer Programming This Book Includes Machine Learning for Beginners, Machine Learning with Python, Deep Learning with Python, Python for Data Analysis
Programming With Python 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow
Machine Learning for Beginners A Practical Guide to Understanding and Applying Machine Learning Concepts